Described in [Ghosh03].
Penalized Discriminant Analysis (PDA).
Initialize Pda class.
Input
- Nreg - [integer] number of regressions
Compute Pda model.
Input
- x - [2D numpy array float] (sample x feature) training data
- y - [1D numpy array integer] (two classes, 1 or -1) classes
Output
- 1
Predict Pda model on test point(s).
Input
- p - [1D or 2D numpy array float] test point(s)
Output
- cl - [integer or 1D numpy array integer] class(es) predicted
- self.realpred - [float or 1D numpy array float] real valued prediction
Return feature weights.
Input
- x - [2D numpy array float] (sample x feature) training data
- y - [1D numpy array integer] (two classes, 1 or -1) classes
Output
- fw - [1D numpy array float] feature weights
[Ghosh03] | D Ghosh. Penalized discriminant methods for the classification of tumors from gene expression data. Biometrics on Volume 59, Dec. 2003 Page(s):992 - 1000(9). |