Iterative RELIEF for Feature Weighting.
Example:
>>> from numpy import *
>>> from mlpy import *
>>> x = array([[1.1, 2.1, 3.1, -1.0], # first sample
... [1.2, 2.2, 3.2, 1.0], # second sample
... [1.3, 2.3, 3.3, -1.0]]) # third sample
>>> y = array([1, 2, 1]) # classes
>>> myir = Irelief() # initialize irelief class
>>> myir.weights(x, y) # compute feature weights
array([ 0., 0., 0., 1.])
Initialize the Irelief class.
Input
- T - [integer] (>0) max loops
- sigma - [float] (>0.0) kernel width
- teta - [float] (>0.0) convergence parameter
Return feature weights.
Input
- x - [2D numpy array float] (sample x feature) training data
- y - [1D numpy array integer] (two classes) classes
Output
- fw - [1D numpy array float] feature weights
Sigma Error
Sigma parameter is too small.
[Sun07] | Yijun Sun. Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications. IEEE Trans. Pattern Anal. Mach. Intell. 29(6): 1035-1051, 2007. |