Described in [Mika01].
Fisher Discriminant Analysis.
Initialize Fda class.
Input
- C - [float] Regularization parameter
Compute fda model.
Input
- x - [2D numpy array float] (sample x feature) training data
- y - [1D numpy array integer] (two classes, 1 or -1) classes
Output
- 1
Predict fda model on test point(s).
Input
- p - [1D or 2D numpy array float] test point(s)
Output
- cl - [integer or 1D numpy array integer] class(es) predicted
- self.realpred - [float or 1D numpy array float] real valued prediction
Return feature weights.
Input
- x - [2D numpy array float] (sample x feature) training data
- y - [1D numpy array integer] (two classes, 1 or -1) classes
Output
- fw - [1D numpy array float] feature weights
[Mika01] | S Mika and A Smola and B Scholkopf. An improved training algorithm for kernel fisher discriminants. Proceedings AISTATS 2001, 2001. |
[Cristianini02] | N Cristianini, J Shawe-Taylor and A Elisseeff. On Kernel-Target Alignment. Advances in Neural Information Processing Systems, Volume 14, 2002. |