Tools ===== Landscaping and Parameter Tuning -------------------------------- :mod:`mlpy` includes executable scripts to be used off-the-shelf for landscaping and parameter tuning tasks. The classification and optionally feature ranking operations are organized in a sampling procedure (k-fold or Monte Carlo cross validation). * :command:`svm-landscape`: landscaping and regularization parameter (*C*) tuning * :command:`fda-landscape`: landscaping and regularization parameter (*C*) tuning * :command:`srda-landscape`: landscaping and alpha parameter (*alpha*) tuning * :command:`pda-landscape`: landscaping and number of regressions parameter (*Nreg*) tuning * :command:`dlda-landscape` * :command:`nn-landscape`: landscaping Error (:func:`mlpy.err`), Matthews Correlation Coefficient (:func:`mlpy.mcc`) and optionally Canberra Distance (:func:`mlpy.canberra`) are retrieved at each parameter step. :mod:`mlpy` includes executable scripts to be used exclusively for parameter tuning tasks: * :command:`irelief-sigma`: kernel width parameter (*sigma*) tuning In order to print help message: .. code-block:: bash $ command --help Other Tools ----------- :command:`borda` Compute Borda Count, Extraction Indicator, Mean Position Indicator from a text file containing feature lists. :command:`canberra` Compute mean Canberra distance indicator on top-k sublists from a text file containing feature lists and one contanining the top-k positions. In order to print help message: .. code-block:: bash $ command --help The Feature Lists File ^^^^^^^^^^^^^^^^^^^^^^ The feature lists file is a plain text TAB-separated file where each row is a feature ranking (a feature list). Example:: feat6 [TAB] feat2 [TAB] ... [TAB] feat1 feat4 [TAB] feat1 [TAB] ... [TAB] feat7 feat4 [TAB] feat9 [TAB] ... [TAB] feat3 feat2 [TAB] feat3 [TAB] ... [TAB] feat9 feat8 [TAB] feat4 [TAB] ... [TAB] feat2