MCres package¶
Submodules¶
MCres.FakeSampler module¶
-
class
MCres.FakeSampler.FakeSampler(flatchain, flatlnprobability)¶ Bases:
object
MCres.MCres module¶
-
class
MCres.MCres.MCres(sampler, paramstr=None, nwalker=None, niters=None, burnInIts=None, **kwargs)¶ Bases:
objectSampler can be the emcee sampler or a path to a ‘*.res.fits’ file paramstr is a list of (unique) string keywords that relate to each free parameter fitted in the emcee simulation. If left None, it will be set automatically to p1, p2, etc. nwalker, nwalker, burnInIts are the emcee MCMC simulation parameters
-
MCmap(param_x, param_y, bin_x=50, bin_y=50, cmap='jet', cm_min=None, cm_max=None, axescolor='w', polar=False, showmax=True, **kwargs)¶ Return a 2D histogram of the MC chain, showing the walker density per bin
-
Pbmap(param_x, param_y, bin_x=50, bin_y=50, cmap='jet', cm_min=None, cm_max=None, axescolor='w', polar=False, showmax=True, **kwargs)¶ Return a 2D histogram of the MC chain, showing the best loglikelihood per bin
-
addfilter(param, v_min=None, v_max=None)¶ Apply a filter on a parameter
-
best¶
-
bounds¶
-
chain2D¶
-
chainraw2D¶
-
corner(raw=False, bins=50, quantiles=[0.16, 0.5, 0.84], **kwargs)¶ Plot pretty corners for the whole simulation
-
delfilters()¶ Remove all visualization filters applied to the data
-
filters¶
-
fitparam(plot=False, params=[], perbin=131, q=[0.16, 0.84], best=0.5)¶ Fit all or specific parameter with a gaussian, because everything is gaussian
-
remfilter(ind)¶ Remove one visualization filter, of index ind in the filters list
-
save(name, clobber=False, append=False)¶
-
wrap(param, center=3.141592653589793, cycle=6.283185307179586)¶
-
MCres.version module¶
Module contents¶
Easy stuff to process MCMC emcee results
-
class
MCres.MCres(sampler, paramstr=None, nwalker=None, niters=None, burnInIts=None, **kwargs)¶ Bases:
objectSampler can be the emcee sampler or a path to a ‘*.res.fits’ file paramstr is a list of (unique) string keywords that relate to each free parameter fitted in the emcee simulation. If left None, it will be set automatically to p1, p2, etc. nwalker, nwalker, burnInIts are the emcee MCMC simulation parameters
-
MCmap(param_x, param_y, bin_x=50, bin_y=50, cmap='jet', cm_min=None, cm_max=None, axescolor='w', polar=False, showmax=True, **kwargs)¶ Return a 2D histogram of the MC chain, showing the walker density per bin
-
Pbmap(param_x, param_y, bin_x=50, bin_y=50, cmap='jet', cm_min=None, cm_max=None, axescolor='w', polar=False, showmax=True, **kwargs)¶ Return a 2D histogram of the MC chain, showing the best loglikelihood per bin
-
addfilter(param, v_min=None, v_max=None)¶ Apply a filter on a parameter
-
best¶
-
bounds¶
-
chain2D¶
-
chainraw2D¶
-
corner(raw=False, bins=50, quantiles=[0.16, 0.5, 0.84], **kwargs)¶ Plot pretty corners for the whole simulation
-
delfilters()¶ Remove all visualization filters applied to the data
-
filters¶
-
fitparam(plot=False, params=[], perbin=131, q=[0.16, 0.84], best=0.5)¶ Fit all or specific parameter with a gaussian, because everything is gaussian
-
remfilter(ind)¶ Remove one visualization filter, of index ind in the filters list
-
save(name, clobber=False, append=False)¶
-
wrap(param, center=3.141592653589793, cycle=6.283185307179586)¶
-
-
class
MCres.FakeSampler(flatchain, flatlnprobability)¶ Bases:
object
-
MCres.load(filename)¶