14. Citations¶
14.1. Citing MAST¶
To properly cite MAST and its dependencies, go to your completed recipe directory in $MAST_ARCHIVE
and locate the following file
CITATIONS.bib
For example:
cat $MAST_ARCHIVE/Optimization_Al_20140101T120000/CITATIONS.bib
This Bibtex-formatted file may be used directly with LaTeX or imported into a reference manager such as EndNote or Mendeley.
14.2. Full list of possible citations¶
MAST chooses from the following citations when writing the CITATIONS.bib
file:
14.2.1. MAST¶
- Mayeshiba, H. Wu, T. Angsten, A. Kaczmarowski, Z. Song, G. Jenness, W. Xie, D. Morgan. The MAterials Simulation Toolkit (MAST) for Atomistic Modeling of Defects and Diffusion. Computational Materials Science 126 (2017) 90.
- MAST development team. MAterials Simulation Toolkit (MAST). (2015). at <http://pypi.python.org/pypi/MAST>
- Angsten, T., Mayeshiba, T., Wu, H. & Morgan, D. Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures. New J. Phys. 16, 015018 (2014).
- Kaczmarowski, A., Yang, S., Szlufarska, I. & Morgan, D. Genetic algorithm optimization of defect clusters in crystalline materials. Computational Materials Science 98, 234-244, doi:10.1016/j.commatsci.2014.10.062 (2015).
- Yu, Min, STEM additions to structopt package, https://git@github.com/uw-cmg/MAST/structopt (2015).
- Rong, D. Kitchaev, P. Canepa, W. Huang, G. Ceder. An efficient algorithm for finding the minimum energy path for cation migration in ionic materials. The Journal of Chemical Physics 145 (2016) (7) 074112.
14.2.2. pymatgen¶
- Ong, S. P. et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314-319 (2013).
14.2.3. spglib¶
- Togo, A. Spglib. (2009). at <http://spglib.sourceforge.net/>
14.2.4. VASP¶
14.2.4.1. VASP main program¶
- Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169-11186 (1996).
- Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996).
- Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251-14269 (1994).
- Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558-561 (1993).
14.2.4.2. VASP pseudopotentials in general¶
- Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245-8257 (1994).
14.2.4.3. VASP PAW pseudopotentials¶
- Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999).
14.2.4.4. Nudged Elastic Band Calculations with VASP¶
- Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).
- Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000).
- Jónsson, H., Mills, G. & Jacobsen, K. W. in Class. Quantum Dyn. Condens. Phase Simulations (Berne, B. J., Ciccotti, G. & Coker, D. F.) 385 (World Scientific, 1998).
- Sheppard, D. & Henkelman, G. Paths to which the nudged elastic band converges. J. Comput. Chem. 32, 1769-71; author reply 1772-3 (2011).
- Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).
- Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012).
14.2.5. Contact us for corrections¶
If you feel that we have missed or mis-typed a citation, please contact us (Contact Us).