14. Citations

14.1. Citing MAST

To properly cite MAST and its dependencies, go to your completed recipe directory in $MAST_ARCHIVE and locate the following file

CITATIONS.bib

For example:

cat $MAST_ARCHIVE/Optimization_Al_20140101T120000/CITATIONS.bib

This Bibtex-formatted file may be used directly with LaTeX or imported into a reference manager such as EndNote or Mendeley.

14.2. Full list of possible citations

MAST chooses from the following citations when writing the CITATIONS.bib file:

14.2.1. MAST

    1. Mayeshiba, H. Wu, T. Angsten, A. Kaczmarowski, Z. Song, G. Jenness, W. Xie, D. Morgan. The MAterials Simulation Toolkit (MAST) for Atomistic Modeling of Defects and Diffusion. Computational Materials Science 126 (2017) 90.
  • MAST development team. MAterials Simulation Toolkit (MAST). (2015). at <http://pypi.python.org/pypi/MAST>
  • Angsten, T., Mayeshiba, T., Wu, H. & Morgan, D. Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures. New J. Phys. 16, 015018 (2014).
  • Kaczmarowski, A., Yang, S., Szlufarska, I. & Morgan, D. Genetic algorithm optimization of defect clusters in crystalline materials. Computational Materials Science 98, 234-244, doi:10.1016/j.commatsci.2014.10.062 (2015).
  • Yu, Min, STEM additions to structopt package, https://git@github.com/uw-cmg/MAST/structopt (2015).
    1. Rong, D. Kitchaev, P. Canepa, W. Huang, G. Ceder. An efficient algorithm for finding the minimum energy path for cation migration in ionic materials. The Journal of Chemical Physics 145 (2016) (7) 074112.

14.2.2. pymatgen

  • Ong, S. P. et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314-319 (2013).

14.2.3. spglib

14.2.4. VASP

14.2.4.1. VASP main program

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169-11186 (1996).
  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996).
  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251-14269 (1994).
  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558-561 (1993).

14.2.4.2. VASP pseudopotentials in general

  • Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245-8257 (1994).

14.2.4.3. VASP PAW pseudopotentials

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999).

14.2.4.4. Nudged Elastic Band Calculations with VASP

  • Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).
  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000).
  • Jónsson, H., Mills, G. & Jacobsen, K. W. in Class. Quantum Dyn. Condens. Phase Simulations (Berne, B. J., Ciccotti, G. & Coker, D. F.) 385 (World Scientific, 1998).
  • Sheppard, D. & Henkelman, G. Paths to which the nudged elastic band converges. J. Comput. Chem. 32, 1769-71; author reply 1772-3 (2011).
  • Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).
  • Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012).

14.2.5. Contact us for corrections

If you feel that we have missed or mis-typed a citation, please contact us (Contact Us).