FilteringΒΆ

How to clean up a peaksearch output to only get the nice peaks, or whatever criteria you like:

#!/usr/bin/env fable.python
from ImageD11.columnfile import *
import sys
f = columnfile(sys.argv[1])
m = (f.fc < 1020.0) | (f.fc > 1027.0)
f.filter(m)
m = (f.fc < 2044.0) | (f.fc > 2051.0)
f.filter(m)
m = (f.sc < 1020.0) | (f.sc > 1027.0)
f.filter(m)
m = (f.sc < 2044.0) | (f.sc > 2051.0)
f.filter(m)
f.writefile(sys.argv[2])

Since version 1.0 of ImageD11 a “columnfile” facility has been added. This python object allows for easy filtering of your data by generating attributes representing the names of columns, and also a filter function. Here is an example:

D:\wright\Grain_Stuff\sim_test\simdata_oPPA_5grains>python
Python 2.4.4 (#71, Oct 18 2006, 08:34:43) [MSC v.1310 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from ImageD11.columnfile import columnfile
>>> **obj = columnfile("peaks_t11.flt")**
>>> dir(obj)
['IMax_f', 'IMax_int', 'IMax_o', 'IMax_s', 'Max_f', 'Max_o', 'Max_s', 'Min_f', 'Min_o', 'Min_s', 'Number_of_pixels',
'__doc__', '__init__', '__module__', 'avg_intensity', 'bigarray', 'covfo', 'covsf', 'covso', 'dety', 'detz', 'f_raw', 'fc',
'filename', 'filter', 'ncols', 'nrows', 'omega', 'onfirst', 'onlast', 'parameters', 'readfile', 's_raw', 'sc',
'set_attributes', 'sigo', 'sigs', 'spot3d_id', 'sum_intensity', 'sum_intensity^2', 'titles', 'writefile']
>>> from matplotlib.pylab import *
>>> plot(obj.Number_of_pixels, obj.sum_intensity)
>>> show()
 [close plot window]
>>>
>>> obj.nrows
13985
>>> **obj.filter( obj.Number_of_pixels > 5 )**
>>> obj.nrows
13577
>>> # Make a more complicated mask
>>> mask = (obj.detz > 20) & (obj.detz < 130)
>>> # see how many peaks will survive
>>> mask.cumsum()
array([  0,   0,   0, ..., 482, 482, 482])
>>> **obj.filter( mask )**
>>> obj.nrows
482
>>> **obj.writefile( "my_filtered_peaks.flt" )**

Some possible filtering operations clipped out of the numpy array object help.

>>> help(mask)
Help on ndarray object:
class ndarray(__builtin__.object)
|  An array object represents a multidimensional, homogeneous array
|  of fixed-size items. [...]
|
|  Methods defined here:
|
|  __abs__(...)
|      x.__abs__() <==> abs(x)
|
|  __add__(...)
|      x.__add__(y) <==> x+y
|
|  __and__(...)
|      x.__and__(y) <==> x&y
|
|  __contains__(...)
|      x.__contains__(y) <==> y in x
|
|  __div__(...)
|      x.__div__(y) <==> x/y
|
|  __divmod__(...)
|      x.__divmod__(y) <==> divmod(x, y)
|
|  __eq__(...)
|      x.__eq__(y) <==> x==y
|
|  __float__(...)
|      x.__float__() <==> float(x)
|
|  __floordiv__(...)
|      x.__floordiv__(y) <==> x//y
|
|  __ge__(...)
|      x.__ge__(y) <==> x>=y
|
|  __gt__(...)
|      x.__gt__(y) <==> x>y
|
|  __iadd__(...)
|      x.__iadd__(y) <==> x+y
|
|  __iand__(...)
|      x.__iand__(y) <==> x&y
|
|  __idiv__(...)
|      x.__idiv__(y) <==> x/y
|
|  __ifloordiv__(...)
|      x.__ifloordiv__(y) <==> x//y
|
|  __ilshift__(...)
|      x.__ilshift__(y) <==> x<<y
|
|  __imod__(...)
|      x.__imod__(y) <==> x%y
|
|  __imul__(...)
|      x.__imul__(y) <==> x*y
|
|  __int__(...)
|      x.__int__() <==> int(x)
|
|  __invert__(...)
|      x.__invert__() <==> ~x
|
|  __ior__(...)
|      x.__ior__(y) <==> x|y
|
|  __ipow__(...)
|      x.__ipow__(y) <==> x**y
|
|  __irshift__(...)
|      x.__irshift__(y) <==> x>>y
|
|  __isub__(...)
|      x.__isub__(y) <==> x-y
|
|  __itruediv__(...)
|      x.__itruediv__(y) <==> x/y
|
|  __ixor__(...)
|      x.__ixor__(y) <==> x^y
|
|  __le__(...)
|      x.__le__(y) <==> x<=y
|
|  __lshift__(...)
|      x.__lshift__(y) <==> x<<y
|
|  __lt__(...)
|      x.__lt__(y) <==> x<y
|
|  __mod__(...)
|      x.__mod__(y) <==> x%y
|
|  __mul__(...)
|      x.__mul__(y) <==> x*y
|
|  __ne__(...)
|      x.__ne__(y) <==> x!=y
|
|  __neg__(...)
|      x.__neg__() <==> -x
|
|  __nonzero__(...)
|      x.__nonzero__() <==> x != 0
|
|  __or__(...)
|      x.__or__(y) <==> x|y
|
|  __pow__(...)
|      x.__pow__(y[, z]) <==> pow(x, y[, z])
|
|  __radd__(...)
|      x.__radd__(y) <==> y+x
|
|  __rand__(...)
|      x.__rand__(y) <==> y&x
|
|  __rdiv__(...)
|      x.__rdiv__(y) <==> y/x
|
|  __rdivmod__(...)
|      x.__rdivmod__(y) <==> divmod(y, x)
|
|  __rfloordiv__(...)
|      x.__rfloordiv__(y) <==> y//x
|
|  __rlshift__(...)
|      x.__rlshift__(y) <==> y<<x
|
|  __rmod__(...)
|      x.__rmod__(y) <==> y%x
|
|  __rmul__(...)
|      x.__rmul__(y) <==> y*x
|
|  __ror__(...)
|      x.__ror__(y) <==> y|x
|
|  __rpow__(...)
|      y.__rpow__(x[, z]) <==> pow(x, y[, z])
|
|  __rrshift__(...)
|      x.__rrshift__(y) <==> y>>x
|
|  __rshift__(...)
|      x.__rshift__(y) <==> x>>y
|
|  __rsub__(...)
|      x.__rsub__(y) <==> y-x
|
|  __rtruediv__(...)
|      x.__rtruediv__(y) <==> y/x
|
|  __rxor__(...)
|      x.__rxor__(y) <==> y^x
|
|  __sub__(...)
|      x.__sub__(y) <==> x-y
|
|  __truediv__(...)
|      x.__truediv__(y) <==> x/y
|
|  __xor__(...)
|      x.__xor__(y) <==> x^y
|
|  all(...)
|      a.all(axis=None)
|
|  any(...)
|      a.any(axis=None, out=None)
|
|  argmax(...)
|      a.argmax(axis=None, out=None)
|
|  argmin(...)
|      a.argmin(axis=None, out=None)
|
|  choose(...)
|      a.choose(b0, b1, ..., bn, out=None, mode='raise')
|
|      Return an array that merges the b_i arrays together using 'a' as
|      the index The b_i arrays and 'a' must all be broadcastable to the
|      same shape.  The output at a particular position is the input
|      array b_i at that position depending on the value of 'a' at that
|      position.  Therefore, 'a' must be an integer array with entries
|      from 0 to n+1.;
|
|  clip(...)
|      a.clip(min=, max=, out=None)
|
|  nonzero(...)
|      a.nonzero() returns a tuple of arrays
|
|      Returns a tuple of arrays, one for each dimension of a,
|      containing the indices of the non-zero elements in that
|      dimension.  The corresponding non-zero values can be obtained
|      with
|          a[a.nonzero()].
|
|      To group the indices by element, rather than dimension, use
|          transpose(a.nonzero())
|      instead. The result of this is always a 2d array, with a row for
|      each non-zero element.;

We think it is Turing complete!