Source code for gramps.gen.utils.place

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Gramps - a GTK+/GNOME based genealogy program
#
# Copyright (C) 2007-2009  B. Malengier
# Copyright (C) 2009  Swoon on bug tracker
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#


#-------------------------------------------------------------------------
#
# Standard python modules
#
#-------------------------------------------------------------------------
from __future__ import print_function, unicode_literals

from ..const import GRAMPS_LOCALE as glocale
_ = glocale.translation.gettext
import math

#-------------------------------------------------------------------------
#
# GRAMPS modules
#
#-------------------------------------------------------------------------


#-------------------------------------------------------------------------
#
# begin localisation part
#
#-------------------------------------------------------------------------

# translation of N/S/E/W, make sure translator understands
degrees = "1"
North = _("%(north_latitude)s N") % {'north_latitude' : degrees}
South = _("%(south_latitude)s S") % {'south_latitude' : degrees}
East  = _("%(east_longitude)s E") % {'east_longitude' : degrees}
West  = _("%(west_longitude)s W") % {'west_longitude' : degrees}

# extract letters we really need
North = North.replace("1"," ").strip()
South = South.replace("1"," ").strip()
East  = East.replace("1"," ").strip()
West  = West.replace("1"," ").strip()

# build dictionary with translation en to local language
translate_en_loc = {}
translate_en_loc['N'] = North
translate_en_loc['S'] = South
translate_en_loc['E'] = East
translate_en_loc['W'] = West

# keep translation only if it does not conflict with english
if 'N' == South or 'S' == North or 'E' == West or 'W' == East:
    translate_en_loc['N'] = 'N'
    translate_en_loc['S'] = 'S'
    translate_en_loc['E'] = 'E'
    translate_en_loc['W'] = 'W'
# end localisation part


#------------------
#
# helper functions
#
#------------------

def __convert_structure_to_float(sign, degs, mins=0, secs=0.0) :
    """helper function which converts a structure to a nice
    representation
    """
    v = float(degs) 
    if mins is not None:
        v += float(mins) / 60.
    if secs is not None:
        v += secs / 3600.
    return -v if sign == "-" else v

def __convert_using_float_repr(stringValue):
    """ helper function that tries to convert the string using the float
    representation
    """
    try : 
        v = float(stringValue)      
        return v
    except ValueError :
        return None;

def __convert_using_colon_repr(stringValue):
    """ helper function that tries to convert the string using the colon
    representation
    """
    if stringValue.find(r':') == -1 :
        return None

    l = stringValue.split(':')
    if len(l) < 2 or len(l) > 3:
        return None
    l[0]=l[0].strip()
    # if no characters before ':' nothing useful is input!
    if len(l[0]) == 0:
        return None
    if l[0][0] in ['+', '-']:
        sign = l[0][0]
        l[0]=l[0][1:].strip()
        # regard a second sign as an error
        if l[0][0] in ['+', '-']:
            return None
    else:
        sign = '+'
    try:
        degs = int(l[0])
        if degs < 0:
            return None
    except:
        return None
    try:
        mins = int(l[1])
        if mins < 0 or mins >= 60:
            return None
    except:
        return None
    secs=0.
    if len(l) == 3:
        try:
            secs = float(l[2])
            if secs < 0. or secs >= 60.:
                return None
        except:
            return None

    return __convert_structure_to_float(sign, degs, mins, secs)

def __convert_using_classic_repr(stringValue, typedeg):
    """helper function that tries to convert the string using the colon
    representation
    """
    if stringValue.find(r'_') != -1:
        return None    # not a valid lat or lon

    #exchange some characters
    stringValue = stringValue.replace('°',r'_')
    #allow to input ° as #, UTF-8 code c2b00a
    stringValue = stringValue.replace('º',r'_')
    #allow to input º as #, UTF-8 code c2ba0a
    stringValue = stringValue.replace(r'#',r'_')
    #allow to input " as ''
    stringValue = stringValue.replace(r"''",r'"')
    #allow some special unicode symbols
    stringValue = stringValue.replace('\u2033',r'"')
    stringValue = stringValue.replace('\u2032',r"'")
    #ignore spaces, a regex with \s* would be better here...
    stringValue = stringValue.replace(r' ', r'')
    stringValue = stringValue.replace(r'\t', r'')

    # get the degrees, must be present
    if stringValue.find(r'_') == -1:
        return None
    l = stringValue.split(r'_')
    if len(l) != 2:
        return None

    try: 
        degs = int(l[0])  #degrees must be integer value
        if degs < 0:
            return None
    except:
        return None
    # next: minutes might be present once
    l2 = l[1].split(r"'")
    l3 = l2
    mins = 0
    # See if minutes might be decimal?
    # Then no seconds is supposed to be given
    if l2[0].find(r'.') > 0:
        # Split in integer and decimal parts
        l4 = l2[0].split(r".")
        # Set integer minutes
        l2[0] = l4[0]
        # Convert the decimal part of minutes to seconds
        try:
          lsecs=float('0.' + l4[1]) * 60.0
          # Set the seconds followed by direction letter N/S/W/E
          l2[1] = str(lsecs) +  '"' + l2[1]
        except:
            return None

    if len(l2) > 2:
        return None
    if len(l2) == 2:
        l3 = [l2[1],]
        try:
            mins = int(l2[0]) #minutes must be integer value
            if mins < 0 or mins >= 60:
                return None
        except:
            return None
    # next: seconds might be present once
    l3 = l3[0].split(r'"')
    last = l3[0]
    secs = 0.
    if len(l3) > 2:
        return None 
    if len(l3) == 2:
        last = l3[1]
        try:
            secs = float(l3[0])
            if secs < 0. or secs >= 60.:
                return None
        except:
            return None
    # last entry should be the direction
    if typedeg == 'lat':
        if last == 'N':
            sign = '+'
        elif last == 'S':
            sign = '-'
        else:
            return None
    elif typedeg == 'lon':
        if last == 'E':
            sign = '+'
        elif last == 'W':
            sign = '-'
        else:
            return None
    else:
        return None

    return __convert_structure_to_float(sign, degs, mins, secs)

def __convert_using_modgedcom_repr(val, typedeg):
    """ helper function that tries to convert the string using the
    modified GEDCOM representation where direction [NSEW] is appended
    instead of prepended. This particular representation is the result
    of value normalization done on values passed to this function
    """
    if typedeg == 'lat':
        pos = val.find('N')
        if pos >= 0:
            stringValue = val[:pos]
        else:
            pos = val.find('S')
            if pos >= 0:
                stringValue = '-' + val[:pos]
            else:
                return None
    else:
        pos = val.find('E')
        if pos >= 0:
            stringValue = val[:pos]
        else:
            pos = val.find('W')
            if pos >= 0:
                stringValue = '-' + val[:pos]
            else:
                return None
    try : 
        v = float(stringValue)      
        return v
    except ValueError :
        return None;

def __convert_float_val(val, typedeg = "lat"):
    # function converting input to float, recognizing decimal input, or 
    # degree notation input. Only english input
    # There is no check on maximum/minimum of degree
    # In case of degree minutes seconds direction input,
    # it is checked that degree >0, 0<= minutes <= 60,
    # 0<= seconds <= 60, direction is in the directions dic.

    #change , to . so that , input works in non , localization
    #this is no problem, as a number like 100,000.20 cannot appear in 
    #lat/lon
    #change XX,YY into XX.YY 
    if val.find(r'.') == -1 :
        val = val.replace(',', '.')
    
    # format: XX.YYYY
    v = __convert_using_float_repr(val) 
    if v is not None:
        return v

    # format: XX:YY:ZZ
    v = __convert_using_colon_repr(val) 
    if v is not None : 
        return v

    # format: XX° YY' ZZ" [NSWE]
    v = __convert_using_classic_repr(val, typedeg) 
    if v is not None : 
        return v

    # format XX.YYYY[NSWE]
    v = __convert_using_modgedcom_repr(val, typedeg)
    if v is not None :
        return v
    
    # no format succeeded
    return None

#-------------------------------------------------------------------------
#
# conversion function
#
#-------------------------------------------------------------------------

[docs]def conv_lat_lon(latitude, longitude, format="D.D4"): """ Convert given string latitude and longitude to a required format. :param latitude: Latitude :type latitude: string :param longitude: Longitude :type longitude: string :param format: Ouput format :type format: string :returns: a tuple of 2 strings, or a string (for ISO formats). If conversion fails: returns: (None, None) or None (for ISO formats) Possible formats: ========= ============================================================ Format Description ========= ============================================================ 'D.D4' degree notation, 4 decimals eg +12.0154 , -124.3647 'D.D8' degree notation, 8 decimals (precision like ISO-DMS) eg +12.01543265 , -124.36473268 'DEG' degree, minutes, seconds notation eg 50°52'21.92''N , 124°52'21.92''E ° has UTF-8 code c2b00a or N50º52'21.92" , E14º52'21.92" º has UTF-8 code c2ba0a or N50º52.3456' , E14º52.9876' ; decimal minutes, no seconds 'DEG-:' degree, minutes, seconds notation with : eg -50:52:21.92 , 124:52:21.92 'ISO-D' ISO 6709 degree notation i.e. ±DD.DDDD±DDD.DDDD 'ISO-DM' ISO 6709 degree, minutes notation i.e. ±DDMM.MMM±DDDMM.MMM 'ISO-DMS' ISO 6709 degree, minutes, seconds notation i.e. ±DDMMSS.SS±DDDMMSS.SS 'RT90' Output format for the Swedish coordinate system RT90 ========= ============================================================ Some generalities: * -90 <= latitude <= +90 with +00 the equator * -180 <= longitude < +180 with +000 prime meridian and -180 the 180th meridian """ # we start the function changing latitude/longitude in english if latitude.find('N') == -1 and latitude.find('S') == -1: # entry is not in english, convert to english latitude = latitude.replace(translate_en_loc['N'],'N') latitude = latitude.replace(translate_en_loc['S'],'S') if longitude.find('E') == -1 and longitude.find('W') == -1: # entry is not in english, convert to english longitude = longitude.replace(translate_en_loc['W'],'W') longitude = longitude.replace(translate_en_loc['E'],'E') # take away leading spaces latitude = latitude.lstrip() longitude = longitude.lstrip() # check if first character is alpha i.e. N or S, put it last if len(latitude) > 1 and latitude[0].isalpha(): latitude = latitude[1:] + latitude[0] # check if first character is alpha i.e. E or W, put it last if len(longitude) > 1 and longitude[0].isalpha(): longitude = longitude[1:] + longitude[0] # convert to float lat_float = __convert_float_val(latitude, 'lat') lon_float = __convert_float_val(longitude, 'lon') # give output (localized if needed) if lat_float is None or lon_float is None: if format == "ISO-D" or format == "ISO-DM" or format == "ISO-DMS": return None else: return (None, None) if lat_float > 90. or lat_float < -90. \ or lon_float >= 180. or lon_float < -180.: if format == "ISO-D" or format == "ISO-DM" or format == "ISO-DMS": return None else: return (None, None) if format == "D.D4": # correct possible roundoff error str_lon = "%.4f" % (lon_float) if str_lon == "180.0000": str_lon ="-180.0000" return ("%.4f" % lat_float , str_lon) if format == "D.D8" or format == "RT90": # correct possible roundoff error str_lon = "%.8f" % (lon_float) if str_lon == "180.00000000": str_lon ="-180.00000000" if format == "RT90": tx = __conv_WGS84_SWED_RT90(lat_float, lon_float) return ("%i" % tx[0], "%i" % tx[1]) else: return ("%.8f" % lat_float , str_lon) if format == "GEDCOM": # The 5.5.1 spec is inconsistent. Length is supposedly 5 to 8 chars, # but the sample values are longer, using up to 6 fraction digits. # As a compromise, we will produce up to 6 fraction digits, but only # if necessary # correct possible roundoff error if lon_float >= 0: str_lon = "%.6f" % (lon_float) if str_lon == "180.000000": str_lon ="W180.000000" else: str_lon = "E" + str_lon else: str_lon = "W" + "%.6f" % (-lon_float) str_lon = str_lon[:-5] + str_lon[-5:].rstrip("0") str_lat = ("%s%.6f" % (("N", lat_float) if lat_float >= 0 else ("S", -lat_float))) str_lat = str_lat[:-5] + str_lat[-5:].rstrip("0") return (str_lat, str_lon) deg_lat = int(lat_float) deg_lon = int(lon_float) min_lat = int(60. * (lat_float - float(deg_lat) )) min_lon = int(60. * (lon_float - float(deg_lon) )) sec_lat = 3600. * (lat_float - float(deg_lat) - float(min_lat) / 60.) sec_lon = 3600. * (lon_float - float(deg_lon) - float(min_lon) / 60.) # dump minus sign on all, store minus sign. Carefull: int(-0.8)=0 !! if (deg_lat) < 0: deg_lat = -1 * deg_lat if (min_lat) < 0: min_lat = -1 * min_lat if (sec_lat) < 0.: sec_lat = -1. * sec_lat if (deg_lon) < 0: deg_lon = -1 * deg_lon if (min_lon) < 0: min_lon = -1 * min_lon if (sec_lon) < 0.: sec_lon = -1. * sec_lon # keep sign as -1* 0 = +0, so 0°2'S is given correct sign in ISO sign_lat = "+" dir_lat = "" if lat_float >= 0.: dir_lat = translate_en_loc['N'] else: dir_lat = translate_en_loc['S'] sign_lat= "-" sign_lon= "+" dir_lon = "" if lon_float >= 0.: dir_lon = translate_en_loc['E'] else: dir_lon = translate_en_loc['W'] sign_lon= "-" if format == "DEG": str_lat = ("%d°%02d'%05.2f\"" % (deg_lat, min_lat, sec_lat)) + dir_lat str_lon = ("%d°%02d'%05.2f\"" % (deg_lon, min_lon, sec_lon)) + dir_lon # correct possible roundoff error in seconds if str_lat[-6-len(dir_lat)] == '6': if min_lat == 59: str_lat = ("%d°%02d'%05.2f\"" % (deg_lat+1, 0, 0.)) + dir_lat else: str_lat = ("%d°%02d'%05.2f\"" % (deg_lat, min_lat+1, 0.)) \ + dir_lat if str_lon[-6-len(dir_lon)] == '6': if min_lon == 59: if deg_lon == 179 and sign_lon == "+": str_lon = ("%d°%02d'%05.2f\"" % (180, 0, 0.)) \ + translate_en_loc['W'] else: str_lon = ("%d°%02d'%05.2f\"" % (deg_lon+1, 0, 0.)) \ + dir_lon else: str_lon = ("%d°%02d'%05.2f\"" % (deg_lon, min_lon+1, 0.)) \ + dir_lon return (str_lat, str_lon) if format == "DEG-:": if sign_lat=="+": sign_lat = "" sign_lon_h = sign_lon if sign_lon=="+": sign_lon_h = "" str_lat = sign_lat + ("%d:%02d:%05.2f" % (deg_lat, min_lat, sec_lat)) str_lon = sign_lon_h + ("%d:%02d:%05.2f" % (deg_lon, min_lon, sec_lon)) # correct possible roundoff error in seconds if str_lat[-5] == '6': if min_lat == 59: str_lat = sign_lat + ("%d:%02d:%05.2f" % (deg_lat+1, 0, 0.)) else: str_lat = sign_lat + \ ("%d:%02d:%05.2f" % (deg_lat, min_lat+1, 0.)) if str_lon[-5] == '6': if min_lon == 59: if deg_lon == 179 and sign_lon == "+": str_lon = '-' + ("%d:%02d:%05.2f" % (180, 0, 0.)) else: str_lon = sign_lon_h + \ ("%d:%02d:%05.2f" % (deg_lon+1, 0, 0.)) else: str_lon = sign_lon_h + \ ("%d:%02d:%05.2f" % (deg_lon, min_lon+1, 0.)) return (str_lat, str_lon) if format == "ISO-D": # ±DD.DDDD±DDD.DDDD str_lon = "%+09.4f" % (lon_float) # correct possible roundoff error if str_lon == "+180.0000": str_lon = "-180.0000" return ("%+08.4f" % lat_float) + str_lon if format == "ISO-DM": # ±DDMM.MMM±DDDMM.MMM min_fl_lat = float(min_lat)+ sec_lat/60. min_fl_lon = float(min_lon)+ sec_lon/60. str_lat = sign_lat + ("%02d%06.3f" % (deg_lat, min_fl_lat)) str_lon = sign_lon + ("%03d%06.3f" % (deg_lon, min_fl_lon)) # correct possible roundoff error if str_lat[3:] == "60.000": str_lat = sign_lat + ("%02d%06.3f" % (deg_lat+1, 0.)) if str_lon[4:] == "60.000": if deg_lon == 179 and sign_lon == "+": str_lon = "-" + ("%03d%06.3f" % (180, 0.)) else: str_lon = sign_lon + ("%03d%06.3f" % (deg_lon+1, 0.)) return str_lat + str_lon if format == "ISO-DMS": # ±DDMMSS.SS±DDDMMSS.SS str_lat = sign_lat + ("%02d%02d%06.3f" % (deg_lat, min_lat, sec_lat)) str_lon = sign_lon + ("%03d%02d%06.3f" % (deg_lon, min_lon, sec_lon)) # correct possible roundoff error if str_lat[5:] == "60.000": if min_lat == 59: str_lat = sign_lat + ("%02d%02d%06.3f" % (deg_lat+1, 0, 0.)) else: str_lat = sign_lat + \ ("%02d%02d%06.3f" % (deg_lat, min_lat +1, 0.)) if str_lon[6:] == "60.000": if min_lon == 59: if deg_lon == 179 and sign_lon == "+": str_lon = "-" + ("%03d%02d%06.3f" % (180, 0, 0)) else: str_lon = sign_lon + \ ("%03d%02d%06.3f" % (deg_lon+1, 0, 0.)) else: str_lon = sign_lon + \ ("%03d%02d%06.3f" % (deg_lon, min_lon+1, 0.)) return str_lat + str_lon
[docs]def atanh(x): """arctangent hyperbolicus""" return 1.0/2.0*math.log((1.0 + x)/(1.0 -x))
def __conv_WGS84_SWED_RT90(lat, lon): """ Input is lat and lon as two float numbers Output is X and Y coordinates in RT90 as a tuple of float numbers The code below converts to/from the Swedish RT90 koordinate system. The converion functions use "Gauss Conformal Projection (Transverse Marcator)" Krüger Formulas. The constanst are for the Swedish RT90-system. With other constants the conversion should be useful for other geographical areas. """ # Some constants used for conversion to/from Swedish RT90 f = 1.0/298.257222101 e2 = f*(2.0-f) n = f/(2.0-f) L0 = math.radians(15.8062845294) # 15 deg 48 min 22.624306 sec k0 = 1.00000561024 a = 6378137.0 # meter at = a/(1.0+n)*(1.0+ 1.0/4.0* pow(n,2)+1.0/64.0*pow(n,4)) FN = -667.711 # m FE = 1500064.274 # m #the conversion lat_rad = math.radians(lat) lon_rad = math.radians(lon) A = e2 B = 1.0/6.0*(5.0*pow(e2,2) - pow(e2,3)) C = 1.0/120.0*(104.0*pow(e2,3) - 45.0*pow(e2,4)) D = 1.0/1260.0*(1237.0*pow(e2,4)) DL = lon_rad - L0 E = A + B*pow(math.sin(lat_rad),2) + \ C*pow(math.sin(lat_rad),4) + \ D*pow(math.sin(lat_rad),6) psi = lat_rad - math.sin(lat_rad)*math.cos(lat_rad)*E xi = math.atan2(math.tan(psi),math.cos(DL)) eta = atanh(math.cos(psi)*math.sin(DL)) B1 = 1.0/2.0*n - 2.0/3.0*pow(n,2) + 5.0/16.0*pow(n,3) + 41.0/180.0*pow(n,4) B2 = 13.0/48.0*pow(n,2) - 3.0/5.0*pow(n,3) + 557.0/1440.0*pow(n,4) B3 = 61.0/240.0*pow(n,3) - 103.0/140.0*pow(n,4) B4 = 49561.0/161280.0*pow(n,4) X = xi + B1*math.sin(2.0*xi)*math.cosh(2.0*eta) + \ B2*math.sin(4.0*xi)*math.cosh(4.0*eta) + \ B3*math.sin(6.0*xi)*math.cosh(6.0*eta) + \ B4*math.sin(8.0*xi)*math.cosh(8.0*eta) Y = eta + B1*math.cos(2.0*xi)*math.sinh(2.0*eta) + \ B2*math.cos(4.0*xi)*math.sinh(4.0*eta) + \ B3*math.cos(6.0*xi)*math.sinh(6.0*eta) + \ B4*math.cos(8.0*xi)*math.sinh(8.0*eta) X = X*k0*at + FN Y = Y*k0*at + FE return (X, Y) def __conv_SWED_RT90_WGS84(X, Y): """ Input is X and Y coordinates in RT90 as float Output is lat and long in degrees, float as tuple """ # Some constants used for conversion to/from Swedish RT90 f = 1.0/298.257222101 e2 = f*(2.0-f) n = f/(2.0-f) L0 = math.radians(15.8062845294) # 15 deg 48 min 22.624306 sec k0 = 1.00000561024 a = 6378137.0 # meter at = a/(1.0+n)*(1.0+ 1.0/4.0* pow(n,2)+1.0/64.0*pow(n,4)) FN = -667.711 # m FE = 1500064.274 # m xi = (X - FN)/(k0*at) eta = (Y - FE)/(k0*at) D1 = 1.0/2.0*n - 2.0/3.0*pow(n,2) + 37.0/96.0*pow(n,3) - 1.0/360.0*pow(n,4) D2 = 1.0/48.0*pow(n,2) + 1.0/15.0*pow(n,3) - 437.0/1440.0*pow(n,4) D3 = 17.0/480.0*pow(n,3) - 37.0/840.0*pow(n,4) D4 = 4397.0/161280.0*pow(n,4) xip = xi - D1*math.sin(2.0*xi)*math.cosh(2.0*eta) - \ D2*math.sin(4.0*xi)*math.cosh(4.0*eta) - \ D3*math.sin(6.0*xi)*math.cosh(6.0*eta) - \ D4*math.sin(8.0*xi)*math.cosh(8.0*eta) etap = eta - D1*math.cos(2.0*xi)*math.sinh(2.0*eta) - \ D2*math.cos(4.0*xi)*math.sinh(4.0*eta) - \ D3*math.cos(6.0*xi)*math.sinh(6.0*eta) - \ D4*math.cos(8.0*xi)*math.sinh(8.0*eta) psi = math.asin(math.sin(xip)/math.cosh(etap)) DL = math.atan2(math.sinh(etap),math.cos(xip)) LON = L0 + DL A = e2 + pow(e2,2) + pow(e2,3) + pow(e2,4) B = -1.0/6.0*(7.0*pow(e2,2) + 17*pow(e2,3) + 30*pow(e2,4)) C = 1.0/120.0*(224.0*pow(e2,3) + 889.0*pow(e2,4)) D = 1.0/1260.0*(4279.0*pow(e2,4)) E = A + B*pow(math.sin(psi),2) + \ C*pow(math.sin(psi),4) + \ D*pow(math.sin(psi),6) LAT = psi + math.sin(psi)*math.cos(psi)*E LAT = math.degrees(LAT) LON = math.degrees(LON) return LAT, LON #------------------------------------------------------------------------- # # For Testing the convert function in this module, apply it as a script: # ==> in command line do "python PlaceUtils.py" # #------------------------------------------------------------------------- if __name__ == '__main__': def test_formats_success(lat1,lon1, text=''): format0 = "D.D4" format1 = "D.D8" format2 = "DEG" format3 = "DEG-:" format4 = "ISO-D" format5 = "ISO-DM" format6 = "ISO-DMS" format7 = "RT90" format8 = "GEDCOM" print("Testing conv_lat_lon function, "+text+':') res1, res2 = conv_lat_lon(lat1,lon1,format0) print(lat1,lon1,"in format",format0, "is ",res1,res2) res1, res2 = conv_lat_lon(lat1,lon1,format1) print(lat1,lon1,"in format",format1, "is ",res1,res2) res1, res2 = conv_lat_lon(lat1,lon1,format2) print(lat1,lon1,"in format",format2, "is ",res1,res2) res1, res2 = conv_lat_lon(lat1,lon1,format3) print(lat1,lon1,"in format",format3, "is ",res1,res2) res = conv_lat_lon(lat1,lon1,format4) print(lat1,lon1,"in format",format4, "is ",res) res = conv_lat_lon(lat1,lon1,format5) print(lat1,lon1,"in format",format5, "is",res) res = conv_lat_lon(lat1,lon1,format6) print(lat1,lon1,"in format",format6, "is",res) res1, res2 = conv_lat_lon(lat1,lon1,format7) print(lat1,lon1,"in format",format7, "is",res1,res2,"\n") res1, res2 = conv_lat_lon(lat1,lon1,format8) print(lat1,lon1,"in format",format8, "is",res1,res2,"\n") def test_formats_fail(lat1,lon1,text=''): print("This test should make conv_lat_lon function fail, "+text+":") res1, res2 = conv_lat_lon(lat1,lon1) print(lat1,lon1," fails to convert, result=", res1,res2,"\n") def test_RT90_conversion(): """ a given lat/lon is converted to RT90 and back as a test: """ la = 59.0 + 40.0/60. + 9.09/3600.0 lo = 12.0 + 58.0/60.0 + 57.74/3600.0 x, y = __conv_WGS84_SWED_RT90(la, lo) lanew, lonew = __conv_SWED_RT90_WGS84(x,y) assert math.fabs(lanew - la) < 1e-6, math.fabs(lanew - la) assert math.fabs(lonew - lo) < 1e-6, math.fabs(lonew - lo) lat, lon = '50.849888888888', '2.885897222222' test_formats_success(lat,lon) lat, lon = ' 50°50\'59.60"N', ' 2°53\'9.23"E' test_formats_success(lat,lon) lat, lon = ' 50 : 50 : 59.60 ', ' -2:53 : 9.23 ' test_formats_success(lat,lon) lat, lon = ' dummy', ' 2#53 \' 9.23 " E ' test_formats_fail(lat,lon) lat, lon = ' 50:50: 59.60', ' d u m my' test_formats_fail(lat,lon) lat, lon = ' 50°59.60"N', ' 2°53\'E' test_formats_success(lat,lon) lat, lon = ' 11° 11\' 11" N, 11° 11\' 11" O', ' ' test_formats_fail(lat,lon) # very small negative lat, lon = '-0.00006', '-0.00006' test_formats_success(lat,lon) # missing direction N/S lat, lon = ' 50°59.60"', ' 2°53\'E' test_formats_fail(lat,lon) # wrong direction on latitude lat, lon = ' 50°59.60"E', ' 2°53\'N' test_formats_fail(lat,lon) # same as above lat, lon = ' 50°59.99"E', ' 2°59\'59.99"N' test_formats_fail(lat,lon) # test precision lat, lon = ' 50°59.99"S', ' 2°59\'59.99"E' test_formats_success(lat,lon) lat, lon = 'N50.849888888888', 'E2.885897222222' test_formats_success(lat,lon) # to large value of lat lat, lon = '90.849888888888', '2.885897222222' test_formats_fail(lat,lon) # extreme values allowed lat, lon = '90', '-180' test_formats_success(lat,lon) # extreme values allowed lat, lon = '90° 00\' 00.00" S ', '179° 59\'59.99"W' test_formats_success(lat,lon) # extreme value not allowed lat, lon = '90° 00\' 00.00" N', '180° 00\'00.00" E' test_formats_fail(lat,lon) # extreme values allowed lat, lon = '90: 00: 00.00 ', '-179: 59:59.99' test_formats_success(lat,lon) # extreme value not allowed lat, lon = '90° 00\' 00.00" N', '180:00:00.00' test_formats_fail(lat,lon) # extreme values not allowed lat, lon = '90', '180' test_formats_fail(lat,lon) lat, lon = ' 89°59\'60"N', ' 2°53\'W' test_formats_fail(lat,lon) lat, lon = ' 89°60\'00"N', ' 2°53\'W' test_formats_fail(lat,lon) lat, lon = ' 89.1°40\'00"N', ' 2°53\'W' test_formats_fail(lat,lon) lat, lon = ' 89°40\'00"N', ' 2°53.1\'W' test_formats_fail(lat,lon) lat, lon = '0', '0' test_formats_success(lat,lon, "Special 0 value, crossing 0-meridian and equator") # small values close to equator lat, lon = ' 1°1"N', ' 1°1\'E' test_formats_success(lat,lon) # roundoff lat, lon = ' 1°59.999"N', ' 1°59.999"E' test_formats_success(lat,lon,'Examples of round off and how it behaves') lat, lon = ' 1°59\'59.9999"N', ' 1°59\'59.9999"E' test_formats_success(lat,lon,'Examples of round off and how it behaves') lat, lon = '89°59\'59.9999"S', '179°59\'59.9999"W' test_formats_success(lat,lon,'Examples of round off and how it behaves') lat, lon = '89°59\'59.9999"N', '179°59\'59.9999"E' test_formats_success(lat,lon,'Examples of round off and how it behaves') #insane number of decimals: lat, lon = '89°59\'59.99999999"N', '179°59\'59.99999999"E' test_formats_success(lat,lon,'Examples of round off and how it begaves') #recognise '' as seconds " lat, lon = '89°59\'59.99\'\' N', '179°59\'59.99\'\'E' test_formats_success(lat,lon, "input \" as ''") #test localisation of , and . as delimiter lat, lon = '50.849888888888', '2,885897222222' test_formats_success(lat,lon, 'localisation of . and , ') lat, lon = '89°59\'59.9999"S', '179°59\'59,9999"W' test_formats_success(lat,lon, 'localisation of . and , ') lat, lon = '89°59\'1.599,999"S', '179°59\'59,9999"W' test_formats_fail(lat,lon, 'localisation of . and , ') #rest lat, lon = '81.2', '-182.3' test_formats_fail(lat,lon) lat, lon = '-91.2', '-1' test_formats_fail(lat,lon) lat, lon = '++50:10:1', '2:1:2' test_formats_fail(lat,lon) lat, lon = '-50:10:1', '-+2:1:2' test_formats_success(lat,lon) lat, lon = '-50::1', '-2:1:2' test_formats_fail(lat,lon) lat, lon = '- 50 : 2 : 1 ', '-2:1:2' test_formats_success(lat,lon) lat, lon = '+ 50:2 : 1', '-2:1:2' test_formats_success(lat,lon) lat, lon = '+50:', '-2:1:2' test_formats_fail(lat,lon) lat, lon = '+50:1', '-2:1:2' test_formats_success(lat,lon) lat, lon = '+50: 0 : 1 : 1', '-2:1:2' test_formats_fail(lat,lon) lat, lon = '+61° 43\' 60.00"', '+17° 7\' 60.00"' test_formats_fail(lat,lon) lat, lon = '+61° 44\' 00.00"N', '+17° 8\' 00.00"E' test_formats_success(lat,lon) lat, lon = ': 0 : 1 : 1', ':1:2' test_formats_fail(lat,lon) lat, lon = 'N 50º52\'21.92"', 'E 124º52\'21.92"' test_formats_success(lat,lon, 'New format with N/E first and another º - character') lat, lon = 'S 50º52\'21.92"', 'W 124º52\'21.92"' test_formats_success(lat,lon, 'New format with S/W first and another º - character') test_RT90_conversion()