# Copyright (c) 2012, GPy authors (see AUTHORS.txt).
# Licensed under the BSD 3-clause license (see LICENSE.txt)
from __future__ import division
import unittest
import numpy as np
import GPy
[docs]class MiscTests(unittest.TestCase):
[docs] def setUp(self):
self.N = 20
self.N_new = 50
self.D = 1
self.X = np.random.uniform(-3., 3., (self.N, 1))
self.Y = np.sin(self.X) + np.random.randn(self.N, self.D) * 0.05
self.X_new = np.random.uniform(-3., 3., (self.N_new, 1))
[docs] def test_setXY(self):
m = GPy.models.GPRegression(self.X, self.Y)
m.set_XY(np.vstack([self.X, np.random.rand(1,self.X.shape[1])]), np.vstack([self.Y, np.random.rand(1,self.Y.shape[1])]))
m._trigger_params_changed()
self.assertTrue(m.checkgrad())
m.predict(m.X)
[docs] def test_raw_predict_numerical_stability(self):
"""
Test whether the predicted variance of normal GP goes negative under numerical unstable situation.
Thanks simbartonels@github for reporting the bug and providing the following example.
"""
# set seed for reproducability
np.random.seed(3)
# Definition of the Branin test function
def branin(X):
y = (X[:,1]-5.1/(4*np.pi**2)*X[:,0]**2+5*X[:,0]/np.pi-6)**2
y += 10*(1-1/(8*np.pi))*np.cos(X[:,0])+10
return(y)
# Training set defined as a 5*5 grid:
xg1 = np.linspace(-5,10,5)
xg2 = np.linspace(0,15,5)
X = np.zeros((xg1.size * xg2.size,2))
for i,x1 in enumerate(xg1):
for j,x2 in enumerate(xg2):
X[i+xg1.size*j,:] = [x1,x2]
Y = branin(X)[:,None]
# Fit a GP
# Create an exponentiated quadratic plus bias covariance function
k = GPy.kern.RBF(input_dim=2, ARD = True)
# Build a GP model
m = GPy.models.GPRegression(X,Y,k)
# fix the noise variance
m.likelihood.variance.fix(1e-5)
# Randomize the model and optimize
m.randomize()
m.optimize()
# Compute the mean of model prediction on 1e5 Monte Carlo samples
Xp = np.random.uniform(size=(int(1e5),2))
Xp[:,0] = Xp[:,0]*15-5
Xp[:,1] = Xp[:,1]*15
_, var = m.predict(Xp)
self.assertTrue(np.all(var>=0.))
[docs] def test_raw_predict(self):
k = GPy.kern.RBF(1)
m = GPy.models.GPRegression(self.X, self.Y, kernel=k)
m.randomize()
m.likelihood.variance = .5
Kinv = np.linalg.pinv(k.K(self.X) + np.eye(self.N) * m.likelihood.variance)
K_hat = k.K(self.X_new) - k.K(self.X_new, self.X).dot(Kinv).dot(k.K(self.X, self.X_new))
mu_hat = k.K(self.X_new, self.X).dot(Kinv).dot(m.Y_normalized)
mu, covar = m.predict_noiseless(self.X_new, full_cov=True)
self.assertEquals(mu.shape, (self.N_new, self.D))
self.assertEquals(covar.shape, (self.N_new, self.N_new))
np.testing.assert_almost_equal(K_hat, covar)
np.testing.assert_almost_equal(mu_hat, mu)
mu, var = m.predict_noiseless(self.X_new)
self.assertEquals(mu.shape, (self.N_new, self.D))
self.assertEquals(var.shape, (self.N_new, 1))
np.testing.assert_almost_equal(np.diag(K_hat)[:, None], var)
np.testing.assert_almost_equal(mu_hat, mu)
[docs] def test_normalizer(self):
k = GPy.kern.RBF(1)
Y = self.Y
mu, std = Y.mean(0), Y.std(0)
m = GPy.models.GPRegression(self.X, Y, kernel=k, normalizer=True)
m.optimize(messages=True)
assert(m.checkgrad())
k = GPy.kern.RBF(1)
m2 = GPy.models.GPRegression(self.X, (Y-mu)/std, kernel=k, normalizer=False)
m2[:] = m[:]
mu1, var1 = m.predict(m.X, full_cov=True)
mu2, var2 = m2.predict(m2.X, full_cov=True)
np.testing.assert_allclose(mu1, (mu2*std)+mu)
np.testing.assert_allclose(var1, var2*std**2)
mu1, var1 = m.predict(m.X, full_cov=False)
mu2, var2 = m2.predict(m2.X, full_cov=False)
np.testing.assert_allclose(mu1, (mu2*std)+mu)
np.testing.assert_allclose(var1, var2*std**2)
q50n = m.predict_quantiles(m.X, (50,))
q50 = m2.predict_quantiles(m2.X, (50,))
np.testing.assert_allclose(q50n[0], (q50[0]*std)+mu)
# Test variance component:
qs = np.array([2.5, 97.5])
# The quantiles get computed before unormalization
# And transformed using the mean transformation:
c = np.random.choice(self.X.shape[0])
q95 = m2.predict_quantiles(self.X[[c]], qs)
mu, var = m2.predict(self.X[[c]])
from scipy.stats import norm
np.testing.assert_allclose((mu+(norm.ppf(qs/100.)*np.sqrt(var))).flatten(), np.array(q95).flatten())
[docs] def check_jacobian(self):
try:
import autograd.numpy as np, autograd as ag, GPy, matplotlib.pyplot as plt
from GPy.models import GradientChecker, GPRegression
except:
raise self.skipTest("autograd not available to check gradients")
def k(X, X2, alpha=1., lengthscale=None):
if lengthscale is None:
lengthscale = np.ones(X.shape[1])
exp = 0.
for q in range(X.shape[1]):
exp += ((X[:, [q]] - X2[:, [q]].T)/lengthscale[q])**2
#exp = np.sqrt(exp)
return alpha * np.exp(-.5*exp)
dk = ag.elementwise_grad(lambda x, x2: k(x, x2, alpha=ke.variance.values, lengthscale=ke.lengthscale.values))
dkdk = ag.elementwise_grad(dk, argnum=1)
ke = GPy.kern.RBF(1, ARD=True)
#ke.randomize()
ke.variance = .2#.randomize()
ke.lengthscale[:] = .5
ke.randomize()
X = np.linspace(-1, 1, 1000)[:,None]
X2 = np.array([[0.]]).T
np.testing.assert_allclose(ke.gradients_X([[1.]], X, X), dk(X, X))
np.testing.assert_allclose(ke.gradients_XX([[1.]], X, X).sum(0), dkdk(X, X))
np.testing.assert_allclose(ke.gradients_X([[1.]], X, X2), dk(X, X2))
np.testing.assert_allclose(ke.gradients_XX([[1.]], X, X2).sum(0), dkdk(X, X2))
m = GPRegression(self.X, self.Y)
def f(x):
m.X[:] = x
return m.log_likelihood()
def df(x):
m.X[:] = x
return m.kern.gradients_X(m.grad_dict['dL_dK'], X)
def ddf(x):
m.X[:] = x
return m.kern.gradients_XX(m.grad_dict['dL_dK'], X).sum(0)
gc = GradientChecker(f, df, self.X)
gc2 = GradientChecker(df, ddf, self.X)
assert(gc.checkgrad())
assert(gc2.checkgrad())
[docs] def test_sparse_raw_predict(self):
k = GPy.kern.RBF(1)
m = GPy.models.SparseGPRegression(self.X, self.Y, kernel=k)
m.randomize()
Z = m.Z[:]
# Not easy to check if woodbury_inv is correct in itself as it requires a large derivation and expression
Kinv = m.posterior.woodbury_inv
K_hat = k.K(self.X_new) - k.K(self.X_new, Z).dot(Kinv).dot(k.K(Z, self.X_new))
K_hat = np.clip(K_hat, 1e-15, np.inf)
mu, covar = m.predict_noiseless(self.X_new, full_cov=True)
self.assertEquals(mu.shape, (self.N_new, self.D))
self.assertEquals(covar.shape, (self.N_new, self.N_new))
np.testing.assert_almost_equal(K_hat, covar)
# np.testing.assert_almost_equal(mu_hat, mu)
mu, var = m.predict_noiseless(self.X_new)
self.assertEquals(mu.shape, (self.N_new, self.D))
self.assertEquals(var.shape, (self.N_new, 1))
np.testing.assert_almost_equal(np.diag(K_hat)[:, None], var)
# np.testing.assert_almost_equal(mu_hat, mu)
[docs] def test_likelihood_replicate(self):
m = GPy.models.GPRegression(self.X, self.Y)
m2 = GPy.models.GPRegression(self.X, self.Y)
np.testing.assert_equal(m.log_likelihood(), m2.log_likelihood())
m.randomize()
m2[:] = m[''].values()
np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood())
m.randomize()
m2[''] = m[:]
np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood())
m.randomize()
m2[:] = m[:]
np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood())
m.randomize()
m2[''] = m['']
np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood())
m.kern.lengthscale.randomize()
m2[:] = m[:]
np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood())
m.Gaussian_noise.randomize()
m2[:] = m[:]
np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood())
m['.*var'] = 2
m2['.*var'] = m['.*var']
np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood())
[docs] def test_likelihood_set(self):
m = GPy.models.GPRegression(self.X, self.Y)
m2 = GPy.models.GPRegression(self.X, self.Y)
np.testing.assert_equal(m.log_likelihood(), m2.log_likelihood())
m.kern.lengthscale.randomize()
m2.kern.lengthscale = m.kern.lengthscale
np.testing.assert_equal(m.log_likelihood(), m2.log_likelihood())
m.kern.lengthscale.randomize()
m2['.*lengthscale'] = m.kern.lengthscale
np.testing.assert_equal(m.log_likelihood(), m2.log_likelihood())
m.kern.lengthscale.randomize()
m2['.*lengthscale'] = m.kern['.*lengthscale']
np.testing.assert_equal(m.log_likelihood(), m2.log_likelihood())
m.kern.lengthscale.randomize()
m2.kern.lengthscale = m.kern['.*lengthscale']
np.testing.assert_equal(m.log_likelihood(), m2.log_likelihood())
[docs] def test_missing_data(self):
from GPy import kern
from GPy.models.bayesian_gplvm_minibatch import BayesianGPLVMMiniBatch
from GPy.examples.dimensionality_reduction import _simulate_matern
D1, D2, D3, N, num_inducing, Q = 13, 5, 8, 400, 3, 4
_, _, Ylist = _simulate_matern(D1, D2, D3, N, num_inducing, False)
Y = Ylist[0]
inan = np.random.binomial(1, .9, size=Y.shape).astype(bool) # 80% missing data
Ymissing = Y.copy()
Ymissing[inan] = np.nan
k = kern.Linear(Q, ARD=True) + kern.White(Q, np.exp(-2)) # + kern.bias(Q)
m = BayesianGPLVMMiniBatch(Ymissing, Q, init="random", num_inducing=num_inducing,
kernel=k, missing_data=True)
assert(m.checkgrad())
mul, varl = m.predict(m.X)
k = kern.RBF(Q, ARD=True) + kern.White(Q, np.exp(-2)) # + kern.bias(Q)
m2 = BayesianGPLVMMiniBatch(Ymissing, Q, init="random", num_inducing=num_inducing,
kernel=k, missing_data=True)
assert(m.checkgrad())
m2.kern.rbf.lengthscale[:] = 1e6
m2.X[:] = m.X.param_array
m2.likelihood[:] = m.likelihood[:]
m2.kern.white[:] = m.kern.white[:]
mu, var = m.predict(m.X)
np.testing.assert_allclose(mul, mu)
np.testing.assert_allclose(varl, var)
q50 = m.predict_quantiles(m.X, (50,))
np.testing.assert_allclose(mul, q50[0])
[docs] def test_likelihood_replicate_kern(self):
m = GPy.models.GPRegression(self.X, self.Y)
m2 = GPy.models.GPRegression(self.X, self.Y)
np.testing.assert_equal(m.log_likelihood(), m2.log_likelihood())
m.kern.randomize()
m2.kern[''] = m.kern[:]
np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood())
m.kern.randomize()
m2.kern[:] = m.kern[:]
np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood())
m.kern.randomize()
m2.kern[''] = m.kern['']
np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood())
m.kern.randomize()
m2.kern[:] = m.kern[''].values()
np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood())
[docs] def test_big_model(self):
m = GPy.examples.dimensionality_reduction.mrd_simulation(optimize=0, plot=0, plot_sim=0)
m.X.fix()
print(m)
m.unfix()
m.checkgrad()
print(m)
m.fix()
print(m)
m.inducing_inputs.unfix()
print(m)
m.checkgrad()
m.unfix()
m.checkgrad()
m.checkgrad()
print(m)
[docs] def test_mrd(self):
from GPy.inference.latent_function_inference import InferenceMethodList, VarDTC
from GPy.likelihoods import Gaussian
Y1 = np.random.normal(0, 1, (40, 13))
Y2 = np.random.normal(0, 1, (40, 6))
Y3 = np.random.normal(0, 1, (40, 8))
Q = 5
m = GPy.models.MRD(dict(data1=Y1, data2=Y2, data3=Y3), Q,
)
m.randomize()
self.assertTrue(m.checkgrad())
m = GPy.models.MRD(dict(data1=Y1, data2=Y2, data3=Y3), Q, initx='PCA_single',
initz='random',
kernel=[GPy.kern.RBF(Q, ARD=1) for _ in range(3)],
inference_method=InferenceMethodList([VarDTC() for _ in range(3)]),
likelihoods = [Gaussian(name='Gaussian_noise'.format(i)) for i in range(3)])
m.randomize()
self.assertTrue(m.checkgrad())
m = GPy.models.MRD(dict(data1=Y1, data2=Y2, data3=Y3), Q, initx='random',
initz='random',
kernel=GPy.kern.RBF(Q, ARD=1),
)
m.randomize()
self.assertTrue(m.checkgrad())
m = GPy.models.MRD(dict(data1=Y1, data2=Y2, data3=Y3), Q, X=np.random.normal(0,1,size=(40,Q)),
X_variance=False,
kernel=GPy.kern.RBF(Q, ARD=1),
likelihoods = [Gaussian(name='Gaussian_noise'.format(i)) for i in range(3)])
m.randomize()
self.assertTrue(m.checkgrad())
[docs] def test_model_set_params(self):
m = GPy.models.GPRegression(self.X, self.Y)
lengthscale = np.random.uniform()
m.kern.lengthscale = lengthscale
np.testing.assert_equal(m.kern.lengthscale, lengthscale)
m.kern.lengthscale *= 1
m['.*var'] -= .1
np.testing.assert_equal(m.kern.lengthscale, lengthscale)
m.optimize()
print(m)
[docs] def test_model_updates(self):
Y1 = np.random.normal(0, 1, (40, 13))
Y2 = np.random.normal(0, 1, (40, 6))
m = GPy.models.MRD([Y1, Y2], 5)
self.count = 0
m.add_observer(self, self._count_updates, -2000)
m.update_model(False)
m['.*Gaussian'] = .001
self.assertEquals(self.count, 0)
m['.*Gaussian'].constrain_bounded(0,.01)
self.assertEquals(self.count, 0)
m.Z.fix()
self.assertEquals(self.count, 0)
m.update_model(True)
self.assertEquals(self.count, 1)
def _count_updates(self, me, which):
self.count+=1
[docs] def test_model_optimize(self):
X = np.random.uniform(-3., 3., (20, 1))
Y = np.sin(X) + np.random.randn(20, 1) * 0.05
m = GPy.models.GPRegression(X, Y)
m.optimize()
print(m)
[docs] def test_warped_gp_identity(self):
"""
A WarpedGP with the identity warping function should be
equal to a standard GP.
"""
k = GPy.kern.RBF(1)
m = GPy.models.GPRegression(self.X, self.Y, kernel=k)
m.optimize()
preds = m.predict(self.X)
warp_k = GPy.kern.RBF(1)
warp_f = GPy.util.warping_functions.IdentityFunction(closed_inverse=False)
warp_m = GPy.models.WarpedGP(self.X, self.Y, kernel=warp_k,
warping_function=warp_f)
warp_m.optimize()
warp_preds = warp_m.predict(self.X)
warp_k_exact = GPy.kern.RBF(1)
warp_f_exact = GPy.util.warping_functions.IdentityFunction()
warp_m_exact = GPy.models.WarpedGP(self.X, self.Y, kernel=warp_k_exact,
warping_function=warp_f_exact)
warp_m_exact.optimize()
warp_preds_exact = warp_m_exact.predict(self.X)
np.testing.assert_almost_equal(preds, warp_preds, decimal=4)
np.testing.assert_almost_equal(preds, warp_preds_exact, decimal=4)
[docs] def test_warped_gp_log(self):
"""
A WarpedGP with the log warping function should be
equal to a standard GP with log labels.
Note that we predict the median here.
"""
k = GPy.kern.RBF(1)
Y = np.abs(self.Y)
logY = np.log(Y)
m = GPy.models.GPRegression(self.X, logY, kernel=k)
m.optimize()
preds = m.predict(self.X)[0]
warp_k = GPy.kern.RBF(1)
warp_f = GPy.util.warping_functions.LogFunction(closed_inverse=False)
warp_m = GPy.models.WarpedGP(self.X, Y, kernel=warp_k,
warping_function=warp_f)
warp_m.optimize()
warp_preds = warp_m.predict(self.X, median=True)[0]
warp_k_exact = GPy.kern.RBF(1)
warp_f_exact = GPy.util.warping_functions.LogFunction()
warp_m_exact = GPy.models.WarpedGP(self.X, Y, kernel=warp_k_exact,
warping_function=warp_f_exact)
warp_m_exact.optimize(messages=True)
warp_preds_exact = warp_m_exact.predict(self.X, median=True)[0]
np.testing.assert_almost_equal(np.exp(preds), warp_preds, decimal=4)
np.testing.assert_almost_equal(np.exp(preds), warp_preds_exact, decimal=4)
[docs] def test_warped_gp_cubic_sine(self, max_iters=100):
"""
A test replicating the cubic sine regression problem from
Snelson's paper. This test doesn't have any assertions, it's
just to ensure coverage of the tanh warping function code.
"""
X = (2 * np.pi) * np.random.random(151) - np.pi
Y = np.sin(X) + np.random.normal(0,0.2,151)
Y = np.array([np.power(abs(y),float(1)/3) * (1,-1)[y<0] for y in Y])
X = X[:, None]
Y = Y[:, None]
warp_m = GPy.models.WarpedGP(X, Y)#, kernel=warp_k)#, warping_function=warp_f)
warp_m['.*\.d'].constrain_fixed(1.0)
warp_m.optimize_restarts(parallel=False, robust=False, num_restarts=5,
max_iters=max_iters)
warp_m.predict(X)
warp_m.predict_quantiles(X)
warp_m.log_predictive_density(X, Y)
warp_m.predict_in_warped_space = False
warp_m.plot()
warp_m.predict_in_warped_space = True
warp_m.plot()
[docs] def test_offset_regression(self):
#Tests GPy.models.GPOffsetRegression. Using two small time series
#from a sine wave, we confirm the algorithm determines that the
#likelihood is maximised when the offset hyperparameter is approximately
#equal to the actual offset in X between the two time series.
offset = 3
X1 = np.arange(0,50,5.0)[:,None]
X2 = np.arange(0+offset,50+offset,5.0)[:,None]
X = np.vstack([X1,X2])
ind = np.vstack([np.zeros([10,1]),np.ones([10,1])])
X = np.hstack([X,ind])
Y = np.sin((X[0:10,0])/30.0)[:,None]
Y = np.vstack([Y,Y])
m = GPy.models.GPOffsetRegression(X,Y)
m.rbf.lengthscale=5.0 #make it something other than one to check our gradients properly!
assert m.checkgrad(), "Gradients of offset parameters don't match numerical approximations."
m.optimize()
assert np.abs(m.offset[0]-offset)<0.1, ("GPOffsetRegression model failing to estimate correct offset (value estimated = %0.2f instead of %0.2f)" % (m.offset[0], offset))
[docs] def test_logistic_basis_func_gradients(self):
X = np.random.uniform(-4, 4, (20, 5))
points = np.random.uniform(X.min(0), X.max(0), X.shape[1])
ks = []
for i in range(points.shape[0]):
if (i%2==0) and (i%3!=0):
self.assertRaises(AssertionError, GPy.kern.LogisticBasisFuncKernel, 1, points, ARD=i%2==0, ARD_slope=i%3==0, active_dims=[i])
else:
ks.append(GPy.kern.LogisticBasisFuncKernel(1, points, ARD=i%2==0, ARD_slope=i%3==0, active_dims=[i]))
k = GPy.kern.Add(ks)
k.randomize()
Y = np.random.normal(0, 1, (X.shape[0], 1))
m = GPy.models.GPRegression(X, Y, kernel=k.copy())
assert m.checkgrad()
[docs] def test_posterior_inf_basis_funcs(self):
X = np.random.uniform(-4, 1, (50, 1))
# Logistic:
k = GPy.kern.LogisticBasisFuncKernel(1, [0, -2])
true_w = [1, 2]
true_slope = [5, -2]
Y = 0
for w, s, c in zip(true_w, true_slope, k.centers[0]):
Y += w/(1+np.exp(-s*(X-c)))
Y += np.random.normal(0, .000001)
m = GPy.models.GPRegression(X,Y,kernel=k.copy())
#m.likelihood.fix(1e-6)
m.optimize()
wu, wv = m.kern.posterior_inf()
#_sort = np.argsort(wu.flat)
#from scipy.stats import norm
#confidence_intervals = np.array(norm.interval(.95, loc=wu.flat[_sort], scale=np.sqrt(np.diag(wv))[_sort])).T
#for i in range(wu.size):
# s,t = confidence_intervals[i]
# v = true_w[i]
# assert ((s<v)&(v<t)), "didnt find true w within the 95% confidence interval of the predicted values"
np.testing.assert_allclose(np.sort(wu.flat), np.sort(true_w), rtol=1e-4)
np.testing.assert_allclose(np.diag(wv), 0, atol=1e-4)
np.testing.assert_allclose(np.sort(m.kern.slope.flat), np.sort(true_slope), rtol=1e-4)
[docs]class GradientTests(np.testing.TestCase):
[docs] def setUp(self):
######################################
# # 1 dimensional example
# sample inputs and outputs
self.X1D = np.random.uniform(-3., 3., (20, 1))
self.Y1D = np.sin(self.X1D) + np.random.randn(20, 1) * 0.05
######################################
# # 2 dimensional example
# sample inputs and outputs
self.X2D = np.random.uniform(-3., 3., (40, 2))
self.Y2D = np.sin(self.X2D[:, 0:1]) * np.sin(self.X2D[:, 1:2]) + np.random.randn(40, 1) * 0.05
[docs] def check_model(self, kern, model_type='GPRegression', dimension=1, uncertain_inputs=False):
# Get the correct gradients
if dimension == 1:
X = self.X1D
Y = self.Y1D
else:
X = self.X2D
Y = self.Y2D
# Get model type (GPRegression, SparseGPRegression, etc)
model_fit = getattr(GPy.models, model_type)
# noise = GPy.kern.White(dimension)
kern = kern # + noise
if uncertain_inputs:
m = model_fit(X, Y, kernel=kern, X_variance=np.random.rand(X.shape[0], X.shape[1]))
else:
m = model_fit(X, Y, kernel=kern)
m.randomize()
# contrain all parameters to be positive
self.assertTrue(m.checkgrad())
[docs] def test_GPRegression_rbf_1d(self):
''' Testing the GP regression with rbf kernel with white kernel on 1d data '''
rbf = GPy.kern.RBF(1)
self.check_model(rbf, model_type='GPRegression', dimension=1)
[docs] def test_GPRegression_rbf_2D(self):
''' Testing the GP regression with rbf kernel on 2d data '''
rbf = GPy.kern.RBF(2)
self.check_model(rbf, model_type='GPRegression', dimension=2)
[docs] def test_GPRegression_rbf_ARD_2D(self):
''' Testing the GP regression with rbf kernel on 2d data '''
k = GPy.kern.RBF(2, ARD=True)
self.check_model(k, model_type='GPRegression', dimension=2)
[docs] def test_GPRegression_mlp_1d(self):
''' Testing the GP regression with mlp kernel with white kernel on 1d data '''
mlp = GPy.kern.MLP(1)
self.check_model(mlp, model_type='GPRegression', dimension=1)
# TODO:
# def test_GPRegression_poly_1d(self):
# ''' Testing the GP regression with polynomial kernel with white kernel on 1d data '''
# mlp = GPy.kern.Poly(1, degree=5)
# self.check_model(mlp, model_type='GPRegression', dimension=1)
[docs] def test_GPRegression_matern52_1D(self):
''' Testing the GP regression with matern52 kernel on 1d data '''
matern52 = GPy.kern.Matern52(1)
self.check_model(matern52, model_type='GPRegression', dimension=1)
[docs] def test_GPRegression_matern52_2D(self):
''' Testing the GP regression with matern52 kernel on 2d data '''
matern52 = GPy.kern.Matern52(2)
self.check_model(matern52, model_type='GPRegression', dimension=2)
[docs] def test_GPRegression_matern52_ARD_2D(self):
''' Testing the GP regression with matern52 kernel on 2d data '''
matern52 = GPy.kern.Matern52(2, ARD=True)
self.check_model(matern52, model_type='GPRegression', dimension=2)
[docs] def test_GPRegression_matern32_1D(self):
''' Testing the GP regression with matern32 kernel on 1d data '''
matern32 = GPy.kern.Matern32(1)
self.check_model(matern32, model_type='GPRegression', dimension=1)
[docs] def test_GPRegression_matern32_2D(self):
''' Testing the GP regression with matern32 kernel on 2d data '''
matern32 = GPy.kern.Matern32(2)
self.check_model(matern32, model_type='GPRegression', dimension=2)
[docs] def test_GPRegression_matern32_ARD_2D(self):
''' Testing the GP regression with matern32 kernel on 2d data '''
matern32 = GPy.kern.Matern32(2, ARD=True)
self.check_model(matern32, model_type='GPRegression', dimension=2)
[docs] def test_GPRegression_exponential_1D(self):
''' Testing the GP regression with exponential kernel on 1d data '''
exponential = GPy.kern.Exponential(1)
self.check_model(exponential, model_type='GPRegression', dimension=1)
[docs] def test_GPRegression_exponential_2D(self):
''' Testing the GP regression with exponential kernel on 2d data '''
exponential = GPy.kern.Exponential(2)
self.check_model(exponential, model_type='GPRegression', dimension=2)
[docs] def test_GPRegression_exponential_ARD_2D(self):
''' Testing the GP regression with exponential kernel on 2d data '''
exponential = GPy.kern.Exponential(2, ARD=True)
self.check_model(exponential, model_type='GPRegression', dimension=2)
[docs] def test_GPRegression_bias_kern_1D(self):
''' Testing the GP regression with bias kernel on 1d data '''
bias = GPy.kern.Bias(1)
self.check_model(bias, model_type='GPRegression', dimension=1)
[docs] def test_GPRegression_bias_kern_2D(self):
''' Testing the GP regression with bias kernel on 2d data '''
bias = GPy.kern.Bias(2)
self.check_model(bias, model_type='GPRegression', dimension=2)
[docs] def test_GPRegression_linear_kern_1D_ARD(self):
''' Testing the GP regression with linear kernel on 1d data '''
linear = GPy.kern.Linear(1, ARD=True)
self.check_model(linear, model_type='GPRegression', dimension=1)
[docs] def test_GPRegression_linear_kern_2D_ARD(self):
''' Testing the GP regression with linear kernel on 2d data '''
linear = GPy.kern.Linear(2, ARD=True)
self.check_model(linear, model_type='GPRegression', dimension=2)
[docs] def test_GPRegression_linear_kern_1D(self):
''' Testing the GP regression with linear kernel on 1d data '''
linear = GPy.kern.Linear(1)
self.check_model(linear, model_type='GPRegression', dimension=1)
[docs] def test_GPRegression_linear_kern_2D(self):
''' Testing the GP regression with linear kernel on 2d data '''
linear = GPy.kern.Linear(2)
self.check_model(linear, model_type='GPRegression', dimension=2)
[docs] def test_SparseGPRegression_rbf_white_kern_1d(self):
''' Testing the sparse GP regression with rbf kernel with white kernel on 1d data '''
rbf = GPy.kern.RBF(1)
self.check_model(rbf, model_type='SparseGPRegression', dimension=1)
[docs] def test_SparseGPRegression_rbf_white_kern_2D(self):
''' Testing the sparse GP regression with rbf kernel on 2d data '''
rbf = GPy.kern.RBF(2)
self.check_model(rbf, model_type='SparseGPRegression', dimension=2)
[docs] def test_SparseGPRegression_rbf_linear_white_kern_1D(self):
''' Testing the sparse GP regression with rbf kernel on 1d data '''
rbflin = GPy.kern.RBF(1) + GPy.kern.Linear(1) + GPy.kern.White(1, 1e-5)
self.check_model(rbflin, model_type='SparseGPRegression', dimension=1)
[docs] def test_SparseGPRegression_rbf_linear_white_kern_2D(self):
''' Testing the sparse GP regression with rbf kernel on 2d data '''
rbflin = GPy.kern.RBF(2) + GPy.kern.Linear(2)
self.check_model(rbflin, model_type='SparseGPRegression', dimension=2)
[docs] def test_GPLVM_rbf_bias_white_kern_2D(self):
""" Testing GPLVM with rbf + bias kernel """
N, input_dim, D = 50, 1, 2
X = np.random.rand(N, input_dim)
k = GPy.kern.RBF(input_dim, 0.5, 0.9 * np.ones((1,))) + GPy.kern.Bias(input_dim, 0.1) + GPy.kern.White(input_dim, 0.05) + GPy.kern.Matern32(input_dim) + GPy.kern.Matern52(input_dim)
K = k.K(X)
Y = np.random.multivariate_normal(np.zeros(N), K, input_dim).T
m = GPy.models.GPLVM(Y, input_dim, kernel=k)
self.assertTrue(m.checkgrad())
[docs] def test_SparseGPLVM_rbf_bias_white_kern_2D(self):
""" Testing GPLVM with rbf + bias kernel """
N, input_dim, D = 50, 1, 2
X = np.random.rand(N, input_dim)
k = GPy.kern.RBF(input_dim, 0.5, 0.9 * np.ones((1,))) + GPy.kern.Bias(input_dim, 0.1) + GPy.kern.White(input_dim, 0.05) + GPy.kern.Matern32(input_dim) + GPy.kern.Matern52(input_dim)
K = k.K(X)
Y = np.random.multivariate_normal(np.zeros(N), K, input_dim).T
m = GPy.models.SparseGPLVM(Y, input_dim, kernel=k)
self.assertTrue(m.checkgrad())
[docs] def test_BCGPLVM_rbf_bias_white_kern_2D(self):
""" Testing GPLVM with rbf + bias kernel """
N, input_dim, D = 50, 1, 2
X = np.random.rand(N, input_dim)
k = GPy.kern.RBF(input_dim, 0.5, 0.9 * np.ones((1,))) + GPy.kern.Bias(input_dim, 0.1) + GPy.kern.White(input_dim, 0.05)
K = k.K(X)
Y = np.random.multivariate_normal(np.zeros(N), K, input_dim).T
m = GPy.models.BCGPLVM(Y, input_dim, kernel=k)
self.assertTrue(m.checkgrad())
[docs] def test_GPLVM_rbf_linear_white_kern_2D(self):
""" Testing GPLVM with rbf + bias kernel """
N, input_dim, D = 50, 1, 2
X = np.random.rand(N, input_dim)
k = GPy.kern.Linear(input_dim) + GPy.kern.Bias(input_dim, 0.1) + GPy.kern.White(input_dim, 0.05)
K = k.K(X)
Y = np.random.multivariate_normal(np.zeros(N), K, input_dim).T
m = GPy.models.GPLVM(Y, input_dim, init='PCA', kernel=k)
self.assertTrue(m.checkgrad())
[docs] def test_GP_EP_probit(self):
N = 20
Nhalf = int(N/2)
X = np.hstack([np.random.normal(5, 2, Nhalf), np.random.normal(10, 2, Nhalf)])[:, None]
Y = np.hstack([np.ones(Nhalf), np.zeros(Nhalf)])[:, None]
kernel = GPy.kern.RBF(1)
m = GPy.models.GPClassification(X, Y, kernel=kernel)
self.assertTrue(m.checkgrad())
[docs] def test_sparse_EP_DTC_probit(self):
N = 20
Nhalf = int(N/2)
X = np.hstack([np.random.normal(5, 2, Nhalf), np.random.normal(10, 2, Nhalf)])[:, None]
Y = np.hstack([np.ones(Nhalf), np.zeros(Nhalf)])[:, None]
Z = np.linspace(0, 15, 4)[:, None]
kernel = GPy.kern.RBF(1)
m = GPy.models.SparseGPClassification(X, Y, kernel=kernel, Z=Z)
self.assertTrue(m.checkgrad())
[docs] def test_multioutput_regression_1D(self):
X1 = np.random.rand(50, 1) * 8
X2 = np.random.rand(30, 1) * 5
X = np.vstack((X1, X2))
Y1 = np.sin(X1) + np.random.randn(*X1.shape) * 0.05
Y2 = -np.sin(X2) + np.random.randn(*X2.shape) * 0.05
Y = np.vstack((Y1, Y2))
k1 = GPy.kern.RBF(1)
m = GPy.models.GPCoregionalizedRegression(X_list=[X1, X2], Y_list=[Y1, Y2], kernel=k1)
#import ipdb;ipdb.set_trace()
#m.constrain_fixed('.*rbf_var', 1.)
self.assertTrue(m.checkgrad())
[docs] def test_multioutput_sparse_regression_1D(self):
X1 = np.random.rand(500, 1) * 8
X2 = np.random.rand(300, 1) * 5
X = np.vstack((X1, X2))
Y1 = np.sin(X1) + np.random.randn(*X1.shape) * 0.05
Y2 = -np.sin(X2) + np.random.randn(*X2.shape) * 0.05
Y = np.vstack((Y1, Y2))
k1 = GPy.kern.RBF(1)
m = GPy.models.SparseGPCoregionalizedRegression(X_list=[X1, X2], Y_list=[Y1, Y2], kernel=k1)
self.assertTrue(m.checkgrad())
[docs] def test_gp_heteroscedastic_regression(self):
num_obs = 25
X = np.random.randint(0, 140, num_obs)
X = X[:, None]
Y = 25. + np.sin(X / 20.) * 2. + np.random.rand(num_obs)[:, None]
kern = GPy.kern.Bias(1) + GPy.kern.RBF(1)
m = GPy.models.GPHeteroscedasticRegression(X, Y, kern)
self.assertTrue(m.checkgrad())
[docs] def test_sparse_gp_heteroscedastic_regression(self):
num_obs = 25
X = np.random.randint(0, 140, num_obs)
X = X[:, None]
Y = 25. + np.sin(X / 20.) * 2. + np.random.rand(num_obs)[:, None]
kern = GPy.kern.Bias(1) + GPy.kern.RBF(1)
Y_metadata = {'output_index':np.arange(num_obs)[:,None]}
noise_terms = np.unique(Y_metadata['output_index'].flatten())
likelihoods_list = [GPy.likelihoods.Gaussian(name="Gaussian_noise_%s" %j) for j in noise_terms]
likelihood = GPy.likelihoods.MixedNoise(likelihoods_list=likelihoods_list)
m = GPy.core.SparseGP(X, Y, X[np.random.choice(num_obs, 10)],
kern, likelihood,
inference_method=GPy.inference.latent_function_inference.VarDTC(),
Y_metadata=Y_metadata)
self.assertTrue(m.checkgrad())
[docs] def test_gp_kronecker_gaussian(self):
np.random.seed(0)
N1, N2 = 30, 20
X1 = np.random.randn(N1, 1)
X2 = np.random.randn(N2, 1)
X1.sort(0); X2.sort(0)
k1 = GPy.kern.RBF(1) # + GPy.kern.White(1)
k2 = GPy.kern.RBF(1) # + GPy.kern.White(1)
Y = np.random.randn(N1, N2)
Y = Y - Y.mean(0)
Y = Y / Y.std(0)
m = GPy.models.GPKroneckerGaussianRegression(X1, X2, Y, k1, k2)
# build the model the dumb way
assert (N1 * N2 < 1000), "too much data for standard GPs!"
yy, xx = np.meshgrid(X2, X1)
Xgrid = np.vstack((xx.flatten(order='F'), yy.flatten(order='F'))).T
kg = GPy.kern.RBF(1, active_dims=[0]) * GPy.kern.RBF(1, active_dims=[1])
mm = GPy.models.GPRegression(Xgrid, Y.reshape(-1, 1, order='F'), kernel=kg)
m.randomize()
mm[:] = m[:]
self.assertTrue(np.allclose(m.log_likelihood(), mm.log_likelihood()))
self.assertTrue(np.allclose(m.gradient, mm.gradient))
X1test = np.random.randn(100, 1)
X2test = np.random.randn(100, 1)
mean1, var1 = m.predict(X1test, X2test)
yy, xx = np.meshgrid(X2test, X1test)
Xgrid = np.vstack((xx.flatten(order='F'), yy.flatten(order='F'))).T
mean2, var2 = mm.predict(Xgrid)
self.assertTrue( np.allclose(mean1, mean2) )
self.assertTrue( np.allclose(var1, var2) )
[docs] def test_gp_VGPC(self):
np.random.seed(10)
num_obs = 25
X = np.random.randint(0, 140, num_obs)
X = X[:, None]
Y = 25. + np.sin(X / 20.) * 2. + np.random.rand(num_obs)[:, None]
kern = GPy.kern.Bias(1) + GPy.kern.RBF(1)
lik = GPy.likelihoods.Gaussian()
m = GPy.models.GPVariationalGaussianApproximation(X, Y, kernel=kern, likelihood=lik)
m.randomize()
self.assertTrue(m.checkgrad())
[docs] def test_ssgplvm(self):
from GPy import kern
from GPy.models import SSGPLVM
from GPy.examples.dimensionality_reduction import _simulate_matern
np.random.seed(10)
D1, D2, D3, N, num_inducing, Q = 13, 5, 8, 45, 3, 9
_, _, Ylist = _simulate_matern(D1, D2, D3, N, num_inducing, False)
Y = Ylist[0]
k = kern.Linear(Q, ARD=True) # + kern.white(Q, _np.exp(-2)) # + kern.bias(Q)
# k = kern.RBF(Q, ARD=True, lengthscale=10.)
m = SSGPLVM(Y, Q, init="rand", num_inducing=num_inducing, kernel=k, group_spike=True)
m.randomize()
self.assertTrue(m.checkgrad())
if __name__ == "__main__":
print("Running unit tests, please be (very) patient...")
unittest.main()