Source code for GPy.models.gp_classification

# Copyright (c) 2013, the GPy Authors (see AUTHORS.txt)
# Licensed under the BSD 3-clause license (see LICENSE.txt)

from ..core import GP
from .. import likelihoods
from .. import kern
from ..inference.latent_function_inference.expectation_propagation import EP

[docs]class GPClassification(GP): """ Gaussian Process classification This is a thin wrapper around the models.GP class, with a set of sensible defaults :param X: input observations :param Y: observed values, can be None if likelihood is not None :param kernel: a GPy kernel, defaults to rbf .. Note:: Multiple independent outputs are allowed using columns of Y """ def __init__(self, X, Y, kernel=None,Y_metadata=None, mean_function=None): if kernel is None: kernel = kern.RBF(X.shape[1]) likelihood = likelihoods.Bernoulli() GP.__init__(self, X=X, Y=Y, kernel=kernel, likelihood=likelihood, inference_method=EP(), mean_function=mean_function, name='gp_classification')