Author: | C.W. |
---|---|
Issues: | http://github.com/chfw/Flask-Excel/issues |
License: | New BSD License |
Version: | 0.0.3 |
Generated: | August 29, 2015 |
Flask-Excel is based on pyexcel and makes it easy to consume/produce information stored in excel files over HTTP protocol as well as on file system. This library can turn the excel data into a list of lists, a list of records(dictionaries), dictionaries of lists. And vice versa. Hence it lets you focus on data in Flask based web development, instead of file formats.
The highlighted features are:
Plugins | Supported file formats |
---|---|
xls | xls, xlsx(r), xlsm(r) |
xlsx | xlsx |
ods3 | ods (python 2.6, 2.7, 3.3, 3.4) |
ods | ods (python 2.6, 2.7) |
text | write only)json, rst, mediawiki, latex, grid, pipe, orgtbl, plain simple |
This library makes infomation processing involving various excel files as easy as processing array and dictionary. The information processing job includes when processing file upload/download, data import into and export from SQL databases, information analysis and persistence. It uses pyexcel and its plugins: 1) to provide one uniform programming interface to handle csv, tsv, xls, xlsx, xlsm and ods formats. 2) to provide one-stop utility to import the data in uploaded file into a database and to export tables in a database as excel files for file download 3) to provide the same interface for information persistence at server side: saving a uploaded excel file to and loading a saved excel file from file system.
You can install it via pip:
$ pip install Flask-Excel
or clone it and install it:
$ git clone http://github.com/chfw/Flask-Excel.git
$ cd Flask-Excel
$ python setup.py install
Installation of individual plugins , please refer to individual plugin page.
In your application, you must import it before using it:
from flask.ext import excel
or:
import flask.ext.excel
A minimal application may look like this:
from flask import Flask, request, jsonify
from flask.ext import excel
app=Flask(__name__)
@app.route("/upload", methods=['GET', 'POST'])
def upload_file():
if request.method == 'POST':
return jsonify({"result": request.get_array(field_name='file')})
return '''
<!doctype html>
<title>Upload an excel file</title>
<h1>Excel file upload (csv, tsv, csvz, tsvz only)</h1>
<form action="" method=post enctype=multipart/form-data><p>
<input type=file name=file><input type=submit value=Upload>
</form>
'''
@app.route("/download", methods=['GET'])
def download_file():
return excel.make_response_from_array([[1,2], [3, 4]], "csv")
# insert database related code here
if __name__ == "__main__":
app.run()
The tiny application exposes two urls: one for file upload and the other for file donload. The former url presents a simple file upload html and responds back in json with the content of the uploaded file. Here is an example file <https://github.com/chfw/Flask-Excel/blob/master/examples/example_for_upload.csv> for testing but you can upload any other excel file. The file upload handler uses request.get_array to parse the uploaded file and gets an array back. The parameter file is coded in the html form:
<input ... name=file>
Warning
If ‘field_name’ was not specified, for example request.get_array(‘file’) in upload_file() function, your browser would display “Bad Request: The browser (or proxy) sent a request that this server could not understand.”
The latter simply throws back a csv file whenever a http request is made to http://localhost:50000/download/. excel.make_response_from_array takes a list of lists and a file type as parameters and sets up the mime type of the http response. If you would like to give ‘tsvz’ a go, please change “csv” to “tsvz”.
The example application understands csv, tsv and its zipped variants: csvz and tsvz. If you would like to expand the list of supported excel file formats (see A list of file formats supported by external plugins) for your own application, you could include one or all of the following import lines right after Flask-Excel is imported:
import pyexcel.ext.xls
import pyexcel.ext.xlsx
import pyexcel.ext.ods
Continue with the previous example, the data import and export will be explained. You can copy the following code in their own appearing sequence and paste them after the place holder:
# insert database related code here
Alernatively, you can find the complete example on github
Now let’s add the following imports first:
from flask.ext.sqlalchemy import SQLAlchemy # sql operations
import pyexcel.ext.xls # import it to be able to handle xls file format
Now configure the database connection. Sqllite will be used and tmp.db will be used and can be found in your current working directory:
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///tmp.db'
db = SQLAlchemy(app)
And paste some models from Flask-SQLAlchemy’s documentation:
class Post(db.Model):
id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.String(80))
body = db.Column(db.Text)
pub_date = db.Column(db.DateTime)
category_id = db.Column(db.Integer, db.ForeignKey('category.id'))
category = db.relationship('Category',
backref=db.backref('posts', lazy='dynamic'))
def __init__(self, title, body, category, pub_date=None):
self.title = title
self.body = body
if pub_date is None:
pub_date = datetime.utcnow()
self.pub_date = pub_date
self.category = category
def __repr__(self):
return '<Post %r>' % self.title
class Category(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(50))
def __init__(self, name):
self.name = name
def __repr__(self):
return '<Category %r>' % self.name
Now let us create the tables in the database:
db.create_all()
Write up the view functions for data import:
@app.route("/import", methods=['GET', 'POST'])
def doimport():
if request.method == 'POST':
def category_init_func(row):
c = Category(row['name'])
c.id = row['id']
return c
def post_init_func(row):
c = Category.query.filter_by(name=row['category']).first()
p = Post(row['title'], row['body'], c, row['pub_date'])
return p
request.save_book_to_database(field_name='file', session=db.session,
tables=[Category, Post],
initializers=(category_init_func,
post_init_func])
return "Saved"
return '''
<!doctype html>
<title>Upload an excel file</title>
<h1>Excel file upload (xls, xlsx, ods please)</h1>
<form action="" method=post enctype=multipart/form-data><p>
<input type=file name=file><input type=submit value=Upload>
</form>
'''
Write up the view function for data export:
@app.route("/export", methods=['GET'])
def doexport():
return excel.make_response_from_tables(db.session, [Category, Post], "xls")
Then run the example again. Visit http://localhost:5000/import and upload sample-data.xls . Then visit http://localhost:5000/export to download the data back.
Previous example shows you how to dump one or more tables over http protocol. Hereby, let’s look at how to turn a query sets into an excel sheet. You can pass a query sets and an array of selected column names to make_response_from_query_sets() and generate an excel sheet from it:
@app.route("/custom_export", methods=['GET'])
def docustomexport():
query_sets = Category.query.filter_by(id=1).all()
column_names = ['id', 'name']
return excel.make_response_from_query_sets(query_sets, column_names, "xls")
Then visit http://localhost:5000/custom_export to download the data
The example application likes to have array but it is not just about arrays. Here is table of functions for all supported data types:
data structure | from file to data structures | from data structures to response |
---|---|---|
dict | get_dict() | make_response_from_dict() |
records | get_records() | make_response_from_records() |
a list of lists | get_array() | make_response_from_array() |
dict of a list of lists | get_book_dict() | make_response_from_book_dict() |
pyexcel.Sheet | get_sheet() | make_response() |
pyexcel.Book | get_book() | make_response() |
database table | save_to_database() | make_response_from_a_table() |
a list of database tables | save_book_to_database() | make_response_from_tables() |
a database query sets | make_response_from_query_sets() |
See more examples of the data structures in pyexcel documentation
Flask-Excel attaches pyexcel functions to Request class.
Parameters: |
|
---|---|
Returns: | A sheet object |
The following html form, the field_name should be “file”:
<!doctype html>
<title>Upload an excel file</title>
<h1>Excel file upload (csv, tsv, csvz, tsvz only)</h1>
<form action="" method=post enctype=multipart/form-data><p>
<input type=file name=file><input type=submit value=Upload>
</form>
Parameters: |
|
---|---|
Returns: | a two dimensional array, a list of lists |
Parameters: |
|
---|---|
Returns: | a dictionary of the file content |
Parameters: |
|
---|---|
Returns: | a list of dictionary of the file content |
Parameters: |
|
---|---|
Returns: | a two dimensional array, a list of lists |
Parameters: |
|
---|---|
Returns: | a two dimensional array, a list of lists |
Parameters: |
|
---|
Parameters: |
|
---|
- flask_excel.make_response(pyexcel_instance, file_type, status=200)¶
Parameters:
- pyexcel_instance – pyexcel.Sheet or pyexcel.Book
- file_type –
one of the following strings:
- ‘csv’
- ‘tsv’
- ‘csvz’
- ‘tsvz’
- ‘xls’
- ‘xlsx’
- ‘xlsm’
- ‘ods’
- status – unless a different status is to be returned.
- flask_excel.make_response_from_array(array, file_type, status=200)¶
Parameters:
- array – a list of lists
- file_type – same as make_response()
- status – same as make_response()
- flask_excel.make_response_from_dict(dict, file_type, status=200)¶
Parameters:
- dict – a dictinary of lists
- file_type – same as make_response()
- status – same as make_response()
- flask_excel.make_response_from_records(records, file_type, status=200)¶
Parameters:
- records – a list of dictionaries
- file_type – same as make_response()
- status – same as make_response()
- flask_excel.make_response_from_book_dict(book_dict, file_type, status=200)¶
Parameters:
- book_dict – a dictionary of two dimensional arrays
- file_type – same as make_response()
- status – same as make_response()
- flask_excel.make_response_from_a_table(session, table, file_type status=200)¶
Produce a single sheet Excel book of file_type
Parameters:
- session – SQLAlchemy session
- table – a SQLAlchemy table
- file_type – same as make_response()
- status – same as make_response()
- flask_excel.make_response_from_query_sets(query_sets, column_names, file_type status=200)¶
Produce a single sheet Excel book of file_type from your custom database queries
Parameters:
- query_sets – a query set
- column_names – a nominated column names. It could not be None, otherwise no data is returned.
- file_type – same as make_response()
- status – same as make_response()
- flask_excel.make_response_from_tables(session, tables, file_type status=200)¶
Produce a multiple sheet Excel book of file_type. It becomes the same as make_response_from_a_table() if you pass tables with an array that has a single table
Parameters:
- session – SQLAlchemy session
- tables – SQLAlchemy tables
- file_type – same as make_response()
- status – same as make_response()