Source code for facemovie.Guy

"""
.. module:: Guy
   :platform: Unix, Windows
   :synopsis: Class defining a Guy in the sense of the FaceMovie. Corresponds to one input image. An input folder is transformed in fact to a list of guys.

.. moduleauthor:: Julien Lengrand-Lambert <jlengrand@gmail.com>

"""
import cv

import time

[docs]class Guy(object): """ A new Guy is declared for each input image. A Guy should have a face, and owns the input image. """ def __init__(self, image_id, date, source): """All data linked to an input image :param image: the input image, formatted as an OpenCV Image :type image: IplImage :param image_id: the name of the image, formatted as a string :type image_id: string :param date: the date where the input image was taken. :type date: datetime """ self.in_x = None self.in_y = None self.name = image_id # Name of the picture used as input self.date = self.find_date(date) # date where image was taken self.source = source self.faces = [] # List of faces detected for this input # Some operations on variables #image = self.load_image() # used to get size image = self.load_image() #(self.or_x, self.or_y) = cv.GetSize(image) # image size in x, y (self.in_x, self.in_y) = cv.GetSize(image) # image size in x, y # FIXME : Time for me to find a better solution self.in_channels = image.nChannels # Two variables used to define the new center of interest of the image # they are defined as the middle of input image at first self.x_center = self.in_x / 2 self.y_center = self.in_y / 2 self.normalize = False self.ratio = 1.0
[docs] def load_image(self): """ This function is used to load the image when needed. To reduce memory load, only its location is saved in real time Returns an iplImage. :returns IplImage - the input image, not modified; loaded using self.source """ # FIXME : Time for me to find a better solution image = cv.LoadImage(self.source) #out = cv.CreateImage((self.in_x, self.in_y), cv.IPL_DEPTH_8U, image.nChannels) #cv.Resize(image, out) return image
[docs] def load_normalized_image(self): """ This function is used to load the normalized image when needed. Normalized images are used so that the face keeps the same size over time To reduce memory load, only the source image location is saved in real time Returns an iplImage. :returns IplImage - the input image, normalized; loaded using self.source and resized afterwards """ in_image = self.load_image() norm_im = cv.CreateImage((self.in_x, self.in_y),cv.IPL_DEPTH_8U, self.in_channels) cv.Resize(in_image, norm_im) return norm_im # overriding in_image
[docs] def find_date(self, date): """This function takes a date as a string, and returns a date object. Used afterwards to sort images chronologically :param date: The date where the image was taken :type date: string :returns: datetime -- Returns a date object according to time library. :raises: In case of error, set the date to be the current time. """ try: my_date = time.strptime(date, "%Y:%m:%d %H:%M:%S") except Exception: my_date = time.time() return my_date
[docs] def search_face(self, face_params): """ Search on the picture for a face. Populates faces list. This function is the only one containing scaling information Set several Guy information, such as the face size, or the virtual center of the image :param face_params: The type of file to be used to train the classifier. :type face_params: string Once Faces have been found, they are listed and ordered """ # Load the input image in_image = self.load_image() # Allocate the temporary images gray = cv.CreateImage((self.in_x, self.in_y), cv.IPL_DEPTH_8U, 1) smallImage = cv.CreateImage((cv.Round(self.in_x / face_params.image_scale), cv.Round (self.in_y / face_params.image_scale)), cv.IPL_DEPTH_8U , 1) # Converts color input image to grayscale cv.CvtColor(in_image, gray, cv.CV_BGR2GRAY) # Scales input image for faster processing cv.Resize(gray, smallImage, cv.CV_INTER_LINEAR) # Equalizes the histogram cv.EqualizeHist(smallImage, smallImage) # Detect the faces small_faces = cv.HaarDetectObjects(smallImage, face_params.face_cascade, cv.CreateMemStorage(0), face_params.haar_scale, face_params.min_neighbors, face_params.haar_flags, face_params.min_size) # Resizing faces to full_scale for face in small_faces: if len(face): # if faces have been found ((x, y, w, h), n) = face big_face = ((int(x * face_params.image_scale), int(y * face_params.image_scale), int(w * face_params.image_scale), int(h * face_params.image_scale)), n) self.faces.append(big_face) # sorting faces to keep only the most probable one self.sort_faces() self.update_center() # finds center of face in image
[docs] def sort_faces(self): """ Sorts faces by number of neighbours found, most probable one first :param face_params: The type of file to be used to train the classifier. :type face_params: string :returns: A list of faces, ordered by probability. If no faces is found, returns a void list. """ if self.has_face() : # needed ? self.faces.sort(key= lambda prob : prob[1], reverse=True) else : self.faces = []
[docs] def update_center(self): """ Using sorted faces, defines the new center of interest of the output image Updates the center of the image, using the most probable face as reference. If no face was found, the center is not updated. """ if self.has_face(): ((x, y, w, h), n) = self.faces[0] self.x_center = x + w / 2 self.y_center = y + h / 2
[docs] def normalize_face(self, reference): """ Searches for best size for intermediate image, whose face fits reference size. This method allows faces to always keep the same size during all the video. Changes the center of the image, so that the final image can be resized accordingly. :param reference: The refence size of the face (in pixels). Defined as the first face size for now :type reference: int """ self.normalize = True ratio = reference / float(self.faces[0][0][3]) #defines the size of the image to have an equalized face norm_x = int(ratio * self.in_x) norm_y = int(ratio * self.in_y) # updates center self.in_x = norm_x self.in_y = norm_y self.x_center = int(ratio * self.x_center) self.y_center = int(ratio * self.y_center) self.ratio = ratio
[docs] def create_video_output(self, x_size, y_size, x_point, y_point): """ Creates image output, centering the face center with the required position If eq_ratio is set to something different than one, input image is scaled so that face/size = eq_ratio :param x_size: The size of the ouput image in x (in pixels) :type x_size: int :param y_size: The size of the ouput image in y (in pixels) :type y_size: int :param x_point: The center of the output image, where the Guy image has to fit in (in pixels) :type x_point: int :param y_point: The center of the output image, where the Guy image has to fit in (in pixels) :type y_point: int :returns: IplImage -- The ouput image, centered to fit with all other images """ out_im = cv.CreateImage((x_size, y_size),cv.IPL_DEPTH_8U, self.in_channels) cv.Zero(out_im) # We want to place the input image so that the center of the face matches # x_center and y_center xtl = x_point - self.x_center ytl = y_point - self.y_center w = self.in_x h = self.in_y rect = (xtl, ytl, w, h) cv.SetImageROI(out_im, rect) # Load input image if self.normalize : in_image = self.load_normalized_image() else: in_image = self.load_image() cv.Copy(in_image, out_im) cv.ResetImageROI(out_im) return out_im
[docs] def create_debug_output(self): """ Creates output image If debug is set to true, output image is the input image with a red box around the most probable face. .. note:: DEPRECATED """ out_im = cv.CreateImage((self.in_x, self.in_y),cv.IPL_DEPTH_8U, self.in_channels) cv.Zero(out_im) # put everything to 0 # Load input image if self.normalize : in_image = self.load_normalized_image() else: in_image = self.load_image() cv.Copy(in_image, out_im) if self.has_face(): # some nice drawings ((x, y, w, h), n) = self.faces[0] # the input to cv.HaarDetectObjects was resized, so scale the # bounding box of each face and convert it to two CvPoints pt1 = (x, y) pt2 = ((x + w), (y + h)) cv.Rectangle(out_im, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)# surrounds face # Adds point in the center pt3 = (self.x_center, self.y_center) cv.Line(out_im, pt3, pt3, cv.RGB(0, 255, 0), 3, 8, 0) return out_im
[docs] def in_display(self, time=1000, im_x=640, im_y=480): """ Displays the input image, for time ms. Setting time to 0 causes the image to remains open. :param time: The time for which image stays diaplyed (in ms). 0 causes the frams to remain open :type time: int :param im_x: The output of the display frame in x (in pixels) :type im_x: int :param im_y: The output of the display frame in y (in pixels) :type im_y: int """ # Load input image if self.normalize : in_image = self.load_normalized_image() else: in_image = self.load_image() cv.NamedWindow(self.name, cv.CV_WINDOW_NORMAL) cv.ResizeWindow(self.name, im_x, im_y) cv.ShowImage(self.name, in_image) cv.WaitKey(time) cv.DestroyWindow(self.name)
[docs] def num_faces(self): """ Returns the number of faces found for this guy :returns: int -- The number of faces found for the input image """ return len(self.faces)
[docs] def has_face(self): """ Returns True of False whether images have been found for the current image or not. :returns: boolean -- True if at least one face has been found """ return (len(self.faces) > 0)