Noise layers¶
Noise layers
Dropout |
Dropout layer |
-
class
braid.berry.layers.
Dropout
(incoming, p, **kwargs)¶ Dropout layer
Sets values to zero with probability p. See notes for disabling dropout during testing.
- incoming : a
- the layer feeding into this layer, or the expected input shape
- p : float, optional (default = 0.5)
- The probability of setting a value to zero
- name : string, optional (default = None)
- Name of the layer. Should be specified for better readability (
inherited from
Layer
).
Layer
instance or a tupleNote
The dropout layer is a regularizer that randomly sets input values to zero; see [1], [2] for why this might improve generalization.
For ease of use, see
get_aux_inputs()
to get the value ofp
during training and testing.[1] Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. R. (2012): Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580. [2] Srivastava Nitish, Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2014): Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 5(Jun)(2), 1929-1958. -
get_aux_inputs
()¶ This function returns the auxiliary inputs required for the layer.
- list of tuples
- [(tf.placeholder.name, (train_phase_value, test_phase_value)),]
>>> l = Dropout(l_in, p=0.5) >>> print l.get_aux_inputs() [(u'drop_1/p:0', (0.5, 1.0))]
-
get_fan_out
()¶ Output receptive field
- int
fan_in * p
-
get_output_for
()¶ Perform the dropout operation and returns the output
tf.Tensor
tf.Tensor
- Output tensor of this layer.
-
get_output_shape_for
(input_shape)¶ Shape of the output tensor
- input_shape : tuple or list
- Shape of the input layer.
- tuple
- Same as the
input_shape
-
validate_input_layer
(incoming)¶ Validate the input layer shape
Returns
True
if the input layer is 2D else, raise anexceptions.AssertError
.