Dense layers¶
Dense or fully connected layer
Dense |
Fully connected or dense layer |
-
class
braid.berry.layers.Dense(incoming, num_units, activation='linear', init=None, W_stddev=0.001, b_val=0.1, **kwargs)¶ Fully connected or dense layer
- incoming :
- Parent layer, whose output is given as input to the current layer.
- num_units : int
- The number of hidden units.
- activation : string, optional (default = “linear”)
- Nonlinearity to apply afer performing convolution. See
berry.activations - init : string, optional (default = None)
- Weight initialization method to choose. See
berry.initializations - W_stddev : float, optional (default = 1e-2)
- Standard deviation for Normal distribution to initialize the weights,
if
init = None. - b_val : float, optional (default = 0.1)
- Constant value to initialize the biases.
- W :
- Weight tensor (inherited from
Layer). - b :
- Bias vector (inherited from
Layer). - name : string, optional (default = None)
- Name of the layer. Should be specified for better readability (
inherited from
Layer).
Layerortf.Tensortf.Variable, optional (default = None)tf.Variable, optional (default = None)- input_layer :
- Input layer to this layer.
- input_shape : tuple
- Shape of the incoming layer.
- output :
- The Tensor obtained after performing the transformation applied by this layer.
- output_shape : tuple
- Shape of the output tensor.
- type : string
- Return the name of the class.
Layerortf.Tensortf.TensorSee also
Inherits class
Layer.-
get_W_shape()¶ Shape of the weight tensor
- list
[input_channels, num_units]
-
get_b_shape()¶ Number of bias units
- list
[num_units]
-
get_fan_in()¶ Input receptive field
- int
input_channels
-
get_fan_out()¶ Output receptive field
- int
num_units
-
get_output_for()¶ Perform the matrix product, add the bias, apply the activation function and return the output
tf.Tensortf.Tensor- Output tensor of this layer.
-
get_output_shape_for(input_shape)¶ Shape of the output tensor
- input_shape : tuple or list
- Shape of the input layer.
- tuple
- Shape of the output tensor.
(batch_size, num_units)
-
validate_input_layer(incoming)¶ Validate the input layer shape
Returns
Trueif the input layer is 2D else, raise anexceptions.AssertError.