Source code for pychemia.population.orbitaldftu

from __future__ import print_function
import os
import re
import itertools
import random
import numpy as np
from ._population import Population
from pychemia import pcm_log
from pychemia.code.abinit import InputVariables
from pychemia.code.abinit import AbinitOutput
from pychemia.utils.mathematics import gram_smith_qr, gea_all_angles, gea_orthogonal_from_angles, unit_vector
from pychemia.utils.serializer import generic_serializer


[docs]class OrbitalDFTU(Population): def __init__(self, name, input_path='abinit.in', num_electrons_dftu=None, num_indep_matrices=None, connections=None): """ This population is created with the purpose of global optimization of correlated orbitals 'd' and 'f'. The population is basically a collection of ABINIT inputs, the candidates have the same structure and uses the same input variables with exception of 'dmatpawu', the purpose of the population is to use global-population searchers to find the correlation matrices 'dmatpawu' that minimizes the energy. The variable 'dmatpawu' is a list of numbers that can be arranged into N matrices. The matrices are 5x5 for 'd' orbitals and 7x7 for 'f' orbitals. :param name: The name of the 'PyChemiaDB' database created to stored the different set of variables and the resulting output from abinit. When using databases protected with username and password, the database should be created independently and the database object must be use as the 'name' argument :param abinit_input: The abinit input file, all the variables will be preserve for all new candidates, except for 'dmatpawu' the only variable that changes. :param num_electrons_dftu: Example [5, 1, 5, 1] """ # Call the parent class initializer to link the PychemiaDB that will be used Population.__init__(self, name, 'global') # Checking for existence of 'abinit.in' if not os.path.isfile(input_path): raise ValueError("Abinit input not found") # Reading the input variables and getting the structure self.input_path = input_path self.input = InputVariables(input_path) if 'dmatpawu' not in self.input.variables: raise ValueError("Abinit input file does not contain 'dmatpawu' variable") self.structure = self.input.get_structure() print('Orbital population:') print('Species [znucl]: %s' % self.input['znucl']) self.natpawu = 0 print('Orbitals corrected:') for i in range(self.input['ntypat']): if self.input['lpawu'][i] == -1: print("%3s : False" % self.input['znucl'][i]) else: print("%3s : True (l=%d)" % (self.input['znucl'][i], self.input['lpawu'][i])) self.natpawu += sum([1 for x in self.input['typat'] if x == i + 1]) print('Number of atoms where DFT+U is applied: %d' % self.natpawu) # Computing the orbital that will be corrected # 2 (d-orbitals) or 3 (f-orbitals) self.maxlpawu = max(self.input['lpawu']) if self.maxlpawu == 2: print("Correlation of 'd' orbitals") elif self.maxlpawu == 3: print("Correlation of 'f' orbitals") # nsppol is the number of independent spin polarisations. Can take the values 1 or 2 if self.input.has_variable('nsppol'): self.nsppol = self.input.get_value('nsppol') else: # Default from ABINIT self.nsppol = 1 # nspinor it the umber of spinorial components of the wavefunctions if self.input.has_variable('nspinor'): self.nspinor = self.input.get_value('nspinor') else: self.nspinor = 1 # nspden is the number of spin-density components if self.input.has_variable('nspden'): self.nspden = self.input.get_value('nspden') else: self.nspden = self.nsppol if self.nsppol == 1 and self.nspinor == 1 and self.nspden == 1: # Non-magnetic system (nsppol=1, nspinor=1, nspden=1): # One (2lpawu+1)x(2lpawu+1) dmatpawu matrix is given for each atom on which +U is applied. # It contains the "spin-up" occupations. self.nmatrices = self.natpawu elif self.nsppol == 2 and self.nspinor == 1 and self.nspden == 2: # Ferromagnetic spin-polarized (collinear) system (nsppol=2, nspinor=1, nspden=2): # Two (2lpawu+1)x(2lpawu+1) dmatpawu matrices are given for each atom on which +U is applied. # They contain the "spin-up" and "spin-down" occupations. self.nmatrices = 2 * self.natpawu elif self.nsppol == 1 and self.nspinor == 1 and self.nspden == 2: # Anti-ferromagnetic spin-polarized(collinear) system(nsppol=1, nspinor=1, nspden=2): # One(2lpawu + 1)x(2lpawu + 1) dmatpawu matrix is given for each atom on which +U is applied. # It contains the "spin-up" occupations. self.nmatrices = self.natpawu elif self.nsppol == 1 and self.nspinor == 2 and self.nspden == 4: # Non-collinear magnetic system (nsppol=1, nspinor=2, nspden=4): # Two (2lpawu+1)x(2lpawu+1) dmatpawu matrices are given for each atom on which +U is applied. # They contains the "spin-up" and "spin-down" occupations (defined as n_up=(n+|m|)/2 and n_dn=(n-|m|)/2), # where m is the integrated magnetization vector). self.nmatrices = 2 * self.natpawu elif self.nsppol == 1 and self.nspinor == 2 and self.nspden == 1: # Non-collinear magnetic system with zero magnetization (nsppol=1, nspinor=2, nspden=1): # Two (2lpawu+1)x(2lpawu+1) dmatpawu matrices are given for each atom on which +U is applied. # They contain the "spin-up" and "spin-down" occupations; self.nmatrices = 2 * self.natpawu print('Variables controling the total number of matrices') print('nsppol : %d' % self.nsppol) print('nspinor: %d' % self.nspinor) print('nspden : %d' % self.nspden) print('Total number of matrices expected on dmatpawu: %d' % self.nmatrices) if num_electrons_dftu is None: abiinput = InputVariables(input_path) dmatpawu = np.array(abiinput['dmatpawu']).reshape(-1, self.ndim, self.ndim) params = dmatpawu2params(dmatpawu, 5) self.num_electrons_dftu = np.apply_along_axis(sum, 1, params['occupations']) else: self.num_electrons_dftu = np.array(num_electrons_dftu) print('Number of electrons for each correlation matrix: %s' % self.num_electrons_dftu) if num_indep_matrices is not None: self.num_indep_matrices = num_indep_matrices else: self.num_indep_matrices = self.nmatrices print('Number of independent matrices: %d' % self.num_indep_matrices) if connections is not None: self.connections = list(connections) if len(self.connections) != self.nmatrices: raise ValueError('Number of connections between matrices is not consistent with the number of matrices ' 'defined on dmatpawu') print('Connections: %s' % self.connections) else: self.connections = list(range(self.nmatrices)) def __str__(self): ret = ' Population LDA+U\n\n' ret += ' Name: %s\n' % self.name ret += ' Tag: %s\n' % self.tag ret += ' Formula: %s\n' % self.structure.formula ret += ' natpawu: %d\n' % self.natpawu ret += ' nmatrices: %d\n' % self.nmatrices ret += ' maxlpawu: %d\n' % self.maxlpawu ret += ' num_indep_matrices: %s\n' % self.num_indep_matrices ret += ' connections: %s\n' % self.connections ret += ' Members: %d\n' % len(self.members) ret += ' Actives: %d\n' % len(self.actives) ret += ' Evaluated: %d\n' % len(self.evaluated) return ret @property def ndim(self): """ Dimension of the matrices defined on dmatpawu, for 'd' orbitals is 5 for 'f' orbitals is 7 :return: """ return 2 * self.maxlpawu + 1
[docs] def add_random(self): """ Creates a new set of variables to reconstruct the dmatpawu matrix_i (integers) is a matrix natpawu x ndim with entries are 0 or 1 matrix_d (deltas) is a matrix natpawu x ndim with entries are [0, 0.5) P (matrices) is a set of matrices natpawu x ndim x ndim Those three matrices allow to reconstruct the variable 'dmatpawu' used by ABINIT :return: """ matrices_defined = [] matrix_i = self.num_indep_matrices * [None] matrix_d = self.num_indep_matrices * [None] euler = self.num_indep_matrices * [None] for i in range(self.num_indep_matrices): nelect = self.num_electrons_dftu[i] val = [x for x in list(itertools.product(range(2), repeat=self.ndim)) if sum(x) == nelect] ii = val[np.random.randint(len(val))] dd = np.zeros(self.ndim) matrix_i[i] = list(ii) matrix_d[i] = list(dd) matrices_defined.append(self.connections[i]) p = gram_smith_qr(self.ndim) euler[i] = gea_all_angles(p) data = {'euler_angles': euler, 'occupations': matrix_i, 'deltas': matrix_d, 'num_matrices': self.num_indep_matrices, 'ndim': self.ndim} return self.new_entry(data), None
[docs] def cross(self, ids): """ Crossing algorithm used notably by GA to mix the information from several candidates This crossing algorithm is mixing the angles of two correlation matrices preserving the ordering of the atoms where the angles are applied. The occupations and deltas are also mixed independently of the euler angles. :param ids: :return: """ assert len(ids) == 2 properties1 = self.get_correlation_params(ids[0]) properties2 = self.get_correlation_params(ids[1]) euler_angles1 = properties1['euler_angles'] euler_angles2 = properties2['euler_angles'] occupations1 = properties1['occupations'] occupations2 = properties2['occupations'] deltas1 = properties1['deltas'] deltas2 = properties2['deltas'] newdata1 = {'euler_angles': [], 'occupations': [], 'deltas': [], 'num_matrices': self.num_indep_matrices, 'ndim': self.ndim} newdata2 = {'euler_angles': [], 'occupations': [], 'deltas': [], 'num_matrices': self.num_indep_matrices, 'ndim': self.ndim} for i in range(self.num_indep_matrices): rnd = random.randint(0, 1) if rnd == 0: newdata1['euler_angles'].append(euler_angles1[i]) newdata2['euler_angles'].append(euler_angles2[i]) else: newdata1['euler_angles'].append(euler_angles2[i]) newdata2['euler_angles'].append(euler_angles1[i]) rnd = random.randint(0, 1) if rnd == 0: newdata1['occupations'].append(occupations1[i]) newdata2['occupations'].append(occupations2[i]) newdata1['deltas'].append(deltas1[i]) newdata2['deltas'].append(deltas2[i]) else: newdata1['occupations'].append(occupations2[i]) newdata2['occupations'].append(occupations1[i]) newdata1['deltas'].append(deltas2[i]) newdata2['deltas'].append(deltas1[i]) entry_id = self.new_entry(newdata1) entry_jd = self.new_entry(newdata2) return entry_id, entry_jd
[docs] def get_correlation_params(self, entry_id): return self.get_entry(entry_id, {'properties': 1}, with_id=False)['properties']
[docs] def evaluate_entry(self, entry_id): """ Evaluation externalized, no implemented :param entry_id: :return: """ pass
[docs] def from_dict(self, population_dict): return self.__init__(name=self.name, input_path=population_dict['input_path'], num_electrons_dftu=population_dict['num_electrons_dftu'], connections=population_dict['connections'], num_indep_matrices=population_dict['num_indep_matrices'])
@property def to_dict(self): ret = super(self).to_dict ret['input_path'] = self.input_path ret['num_electrons_dftu'] = list(self.num_electrons_dftu) ret['num_indep_matrices'] = self.num_indep_matrices ret['connections'] = list(self.connections) return ret
[docs] def new_entry(self, properties, active=True): """ Creates a new entry on the population database from given data. :param properties: dictionary with 3 keys 'D' for deltas, 'I' for the integers and eigen for the rotation matrix applied to the orbitals :param active: if True, the entry is enabled on the DB to be evaluated. :return: """ status = {self.tag: active} properties['energy'] = None entry = {'structure': self.structure.to_dict, 'properties': properties, 'status': status} entry_id = self.insert_entry(entry) pcm_log.debug('Added new entry: %s with tag=%s: %s' % (str(entry_id), self.tag, str(active))) return entry_id
[docs] def is_evaluated(self, entry_id): """ One candidate is considered evaluated if it contains any finite value of energy on the properties.energy field :param entry_id: :return: """ entry = self.get_entry(entry_id, {'_id': 0, 'properties': 1}) if entry['properties']['energy'] is not None: return True else: return False
[docs] def check_duplicates(self, ids): """ For a given list of identifiers 'ids' checks the values for the function 'distance' and return a dictionary where each key is the identifier of a unique candidate and the value is a list of identifiers considered equivalents to it. :param ids: List of identifiers for wich the check will be performed :return: """ ret = {} print('Checking %d candidates' % len(ids)) for i in range(len(ids)): for j in range(i + 1, len(ids)): if self.distance(ids[i], ids[j]) < 1E-3: if ids[i] in ret: ret[ids[i]].append(ids[j]) else: ret[ids[i]] = [ids[j]] return ret
[docs] def distance(self, entry_id, entry_jd): """ Measure of distance for two entries with identifiers 'entry_id' and 'entry_jd' :param entry_id: Identifier of first entry :param entry_jd: Identifier of second entry :return: """ properties1 = self.get_correlation_params(entry_id) properties2 = self.get_correlation_params(entry_jd) euler_angles1 = properties1['euler_angles'] euler_angles2 = properties2['euler_angles'] uvect1 = unit_vector(np.array(euler_angles1).flatten()) uvect2 = unit_vector(np.array(euler_angles2).flatten()) dist_euler = 1 - np.dot(uvect1, uvect2) return dist_euler
[docs] def move_random(self, entry_id, factor=0.2, in_place=False, kind='move'): """ Move one candidate with identifier 'entry_id' randomly with a factor given by 'factor' :param entry_id: Identifier of entry :param factor: Factor use to scale the randomness of change :param in_place: If True the candidate is changed keeping the identifier unchanged :param kind: Use when several algorithms are used for movement. One implemented here :return: """ properties = self.get_correlation_params(entry_id) newdata = dict(properties) for i in range(self.num_indep_matrices): for j in range(self.ndim): perturbation = properties['euler_angles'][i][j] + 2*np.random.rand()*factor - factor if np.pi/2.0 > perturbation > -np.pi/2.0: newdata['euler_angles'][i][j] = perturbation print(newdata) if in_place: return self.pcdb.db.pychemia_entries.update({'_id': entry_id}, {'$set': {'properties': newdata}}) else: return self.new_entry(newdata, active=False)
[docs] def move(self, entry_id, entry_jd, factor=0.2, in_place=False): """ Move one candidate with identifier 'entry_id' in the direction of another candidate 'entry_jd' :param entry_id: Identifier of first entry (Origin) :param entry_jd: Identifier of second entry (Target) :param factor: Scale factor for change, 0 scale is the 'Origin' candidate, 1 is the 'Target' candidate Intermediate values will change candidates accordingly :param in_place: If True the candidate is changed keeping the identifier unchanged :return: """ properties1 = self.get_correlation_params(entry_id) properties2 = self.get_correlation_params(entry_jd) euler_angles1 = properties1['euler_angles'] euler_angles2 = properties2['euler_angles'] euler_angles_new = np.zeros((self.num_indep_matrices, int(self.ndim*(self.ndim-1)/2))) for i in range(self.num_indep_matrices): for j in range(int(self.ndim*(self.ndim-1)/2)): angle1 = euler_angles1[i][j] angle2 = euler_angles2[i][j] if angle1 < angle2: if angle2 - angle1 < angle1 - angle2 + 2*np.pi: direction = 1 # Forward angle = angle2 - angle1 else: direction = -1 # Backward angle = angle1 - angle2 + 2*np.pi else: if angle1 - angle2 < angle2 - angle1 + 2*np.pi: direction = -1 # Backward angle = angle1 - angle2 else: direction = 1 angle = angle2 - angle1 + 2*np.pi euler_angles_new[i, j] = angle1 + direction*factor*angle if euler_angles_new[i, j] > np.pi: euler_angles_new[i, j] -= -2*np.pi if euler_angles_new[i, j] < -np.pi: euler_angles_new[i, j] += -2*np.pi newdata = dict(properties1) newdata['euler_angles'] = generic_serializer(euler_angles_new) if in_place: return self.pcdb.db.pychemia_entries.update({'_id': entry_id}, {'$set': {'properties': newdata}}) else: return self.new_entry(newdata, active=False)
[docs] def recover(self): pass
[docs] def value(self, entry_id): """ Return the energy value associated to the candidate with identifier 'entry_id' :param entry_id: :return: """ entry = self.get_entry(entry_id, {'properties.energy': 1}) return entry['properties']['energy']
[docs] def str_entry(self, entry_id): entry = self.get_entry(entry_id) print(entry['properties']['O'], entry['properties']['D'])
[docs] def get_duplicates(self, ids): return None
[docs] def prepare_folder(self, entry_id, workdir='.', source_dir='.'): """ Prepare directories for abinit execution :param entry_id: bson.ObjectID of the entry that will be used for preparing the folder :param source_dir: (str) is the directory where 'abinit.files' and 'batch.pbs' should be present those directories will be symbolically linked inside the individual work directories :param workdir: (str) Base work directory for abinit executions. Inside this directory, a set of subdirectories will be created using the mongo ID as name. """ # Individual workdir iworkdir = workdir+os.sep+str(entry_id) if not os.path.isdir(iworkdir): os.mkdir(iworkdir) for ifile in ['abinit.files', 'batch.pbs']: if os.path.lexists(iworkdir + os.sep + ifile): os.remove(iworkdir + os.sep + ifile) if not os.path.isfile(source_dir + os.sep + ifile): print('WARNIG: The file %s should be present on %s, symbolic links will be created pointing ' 'to that location' % (ifile, source_dir)) os.symlink(os.path.abspath(source_dir + os.sep + ifile), iworkdir + os.sep + ifile) abiinput = InputVariables(self.input_path) params = self.get_correlation_params(entry_id) dmatpawu = params2dmatpawu(params) abiinput['dmatpawu'] = list(dmatpawu.flatten()) abiinput.write(iworkdir + os.sep + 'abinit.in')
[docs] def collect_data(self, entry_id, workdir): old_properties = self.get_correlation_params(entry_id) if os.path.isfile(workdir + '/abinit.out'): ao = AbinitOutput(workdir + '/abinit.out') dmatpawu = get_final_dmatpawu(workdir + '/abinit.out') params = dmatpawu2params(dmatpawu, self.ndim) properties = dict(params) properties['original_params'] = old_properties if 'etot' in ao.get_energetics(): energy = ao.get_energetics()['etot'][-1] print('Uploading energy data for %s' % entry_id) properties['energy'] = energy self.pcdb.db.pychemia_entries.update({'_id': entry_id}, {'$set': {'properties': properties}}) return True else: return False else: return False
[docs]def params2dmatpawu(params): """ Build the variable dmatpawu from the components stored in params :param params: dictionary with keys 'I', 'D' and 'eigen' :return: """ # print(list(params.keys())) ndim = params['ndim'] if 'num_matrices' in params: num_matrices = params['num_matrices'] else: num_matrices = len(params['deltas']) occupations = np.array(params['occupations']).reshape(num_matrices, -1) deltas = np.array(params['deltas']).reshape(num_matrices, -1) euler_angles = np.array(params['euler_angles']).reshape(num_matrices, -1) print(num_matrices) print(euler_angles.shape) print(deltas.shape) print(occupations.shape) ret = np.zeros((num_matrices, ndim, ndim)) for i in range(num_matrices): print(i) eigval = np.diag(occupations[i]).astype(float) for j in range(ndim): if eigval[j, j] == 0: eigval[j, j] += deltas[i, j] else: eigval[j, j] -= deltas[i, j] print(eigval) rotation = gea_orthogonal_from_angles(euler_angles[i]) print(rotation) correlation = np.dot(np.dot(rotation, eigval), rotation.T) ret[i] = correlation return ret
[docs]def dmatpawu2params(dmatpawu, ndim): """ Takes the contents of the variable 'dmatpawu' and return their components as a set of 'occupations', 'deltas' and 'euler_angles' The Euler angles is a ordered list of angles that can rebuild a rotation matrix 'R' The rotation matrix 'R' is ensured to be an element of SO(ndim), ie det(R)=1. When the eigenvectors return a matrix with determinant -1 a mirror on the first dimension is applied. Such condition has no effect on the physical result of the correlation matrix :param dmatpawu: The contents of the variable 'dmatpawu'. A list of number representing N matrices ndim x ndim :param ndim: ndim is 5 for 'd' orbitals and 7 for 'f' orbitals :return: """ dm = np.array(dmatpawu).reshape((-1, ndim, ndim)) num_matrices = dm.shape[0] eigval = np.array([np.linalg.eigh(x)[0] for x in dm]) occupations = np.array(np.round(eigval), dtype=int) deltas = np.abs(eigval - occupations) rotations = np.array([np.linalg.eigh(x)[1] for x in dm]) mirror = np.eye(ndim) mirror[0, 0] = -1 for i in range(len(rotations)): if np.linalg.det(rotations[i]) < 0: rotations[i] = np.dot(rotations[i], mirror) euler_angles = np.array([list(gea_all_angles(p)) for p in rotations]) return {'occupations': occupations, 'deltas': deltas, 'euler_angles': euler_angles, 'num_matrices': num_matrices, 'ndim': ndim}
[docs]def get_pattern(params, ndim): """ :param params: :param ndim: :return: """ eigvec = np.array(params['eigvec']).reshape((-1, ndim, ndim)) natpawu = len(eigvec) connection = np.zeros((natpawu, natpawu, ndim, ndim)) # bb = np.dot(eigvec[0], np.linalg.inv(eigvec[3])) # connection = np.array(np.round(np.diagonal(bb)), dtype=int) iii = np.array(params['I'], dtype=int).reshape((-1, ndim)) pattern = np.zeros((natpawu, natpawu)) for i in range(natpawu): for j in range(i, natpawu): bb = np.dot(eigvec[0], np.linalg.inv(eigvec[3])) connection[i, j] = bb connection[j, i] = bb if np.all(np.array(iii[i] == iii[j])): pattern[i, j] = 1 pattern[j, i] = 1 else: pattern[i, j] = 0 pattern[j, i] = 0 return connection, pattern
[docs]def get_final_correlation_matrices_from_output(filename): rf = open(filename) data = rf.read() mainblock = re.findall('LDA\+U DATA[\s\w\d\-.=,>:]*\n \n', data) assert len(mainblock) == 1 pattern = "For Atom\s*(\d+), occupations for correlated orbitals. lpawu =\s*([\d]+)\s*Atom\s*[\d]+\s*. Occ. " \ "for lpawu and for spin\s*\d+\s*=\s*([\d\.]+)\s*Atom\s*[\d]+\s*. Occ. for lpawu and for " \ "spin\s*\d+\s*=\s*([\d\.]+)\s*=> On atom\s*\d+\s*, local Mag. for lpawu is[\s\d\w\.\-]*== Occupation " \ "matrix for correlated orbitals:\s*Occupation matrix for spin 1\s*([\d\.\-\s]*)Occupation matrix " \ "for spin 2\s*([\d\.\-\s]*)" ans = re.findall(pattern, mainblock[0]) # print(ans) ret = [] for i in ans: atom_data = {'atom number': int(i[0]), 'orbital': int(i[1]), 'occ spin 1': float(i[2]), 'occ spin 2': float(i[3])} matrix = [float(x) for x in i[4].split()] atom_data['matrix spin 1'] = list(matrix) matrix = [float(x) for x in i[5].split()] atom_data['matrix spin 2'] = list(matrix) ret.append(atom_data) return ret
[docs]def get_final_dmatpawu(filename): ret = get_final_correlation_matrices_from_output(filename) dmatpawu = [] for i in ret: dmatpawu += i['matrix spin 1'] return dmatpawu