PyNFG is a Python package for modeling and solving Network Form Games. It is distributed under the GNU Affero GPL. http://www.gnu.org/licenses/agpl.html
PyNFG is designed to make it easy for researchers to model strategic environments using the Network Form Game (NFG) formalism developed by David Wolpert with contributions from Ritchie Lee, James Bono and others. The main idea of the NFG framework is to translate a strategic environment into the language of probabilistic graphical models. The result is a more intuitive, powerful, and user-friendly framework than the extensive form.
For an introduction to the semi-NFG framework and Level-K D-Relaxed Strategies:
For an introduction to iterated semi-NFG framework and Level-K Reinforcement Learning:
For an introduction to Predictive Game Theory:
PyNFG requires the following packages: Numpy, Scipy, Matplotlib, Networkx, and PyGraphviz. Pygraphviz and Networkx are used only for visualizing the Directed Acyclic Graphs (DAGs) that represent semi-NFGs.
To install from source: Download the source from https://pypi.python.org/pypi/PyNFG/0.1.0. Unzip. Then from the directory with the unzipped files, do “python setup.py install”.
The documentation is hosted at http://pythonhosted.org/PyNFG/.
For questions about using PyNFG, reporting bugs or offering suggestions, please subscribe (low volume) and mail the googlegroup at pynfg@googlegroups.com.
PyNFG is authored by James Bono, Justin Grana, and Dongping Xie. The project has received valuable feedback from David Wolpert, Adrian Agogino, Juan Alonso, Brendan Tracey, Alice Fan, Dominic McConnachie, Kee Palopo, Huu Huynh, and others.